Optimization of imaging conditions for infant hip imaging using flat panel detectors

OECD. Health at a Glance,. OECD Indicators. Paris: OECD Publishing; 2015. p. 2015.

Google Scholar 

Finne PH, Dalen I, Ikonomou N, Ulimoen G, Hansen TWR. Diagnosis of congenital hip dysplasia in the newborn. Acta Orthop. 2008;79(3):313–20.

Article  PubMed  Google Scholar 

Norlén S, Faergemann C. Developmental dysplasia of the hip in infants referred for a combined pediatric orthopedic and radiologic examination–a prospective cohort study. J Orthop. 2022;32:109–14.

Article  PubMed  PubMed Central  Google Scholar 

Pozdnikin, I. Y., Baskov, V. E., Voloshin, S. Y., Barsukov, D. B., Krasnov, A. I., Poznovich, M. S., ... & Bortuleva, O. V. (2017). Errors of diagnosis and the initiation of conservative treatment in children with congenital hip dislocation. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 5(2), 42–51.

Rajaraman P, Simpson J, Neta G, de Gonzalez AB, Ansell P, Linet MS, Roman E (2011) Early life exposure to diagnostic radiation and ultrasound scans and risk of childhood cancer: case-control study. Bmj, 342.

Mazrani W, McHugh K, Marsden PJ. The radiation burden of radiological investigations. Arch Dis Child. 2007;92(12):1127–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gislason-Lee AJ. Patient X-ray exposure and ALARA in the neonatal intensive care unit: global patterns. Pediatr Neonatol. 2021;62(1):3–10.

Article  PubMed  Google Scholar 

Gomi T, Koshida K, Miyati T, Miyagawa J, Hirano H. An experimental comparison of flat-panel detector performance for direct and indirect systems (initial experiences and physical evaluation). J Digit Imaging. 2006;19:362–70.

Article  PubMed  PubMed Central  Google Scholar 

Bacher K, Smeets P, Bonnarens K, De Hauwere A, Verstraete K, Thierens H. Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. Am J Roentgenol. 2003;181(4):923–9.

Article  Google Scholar 

Japan network for research and information on medical exposure (J-RIME). (2020) National Diagnostic Reference Levels in Japan (2020) -Japan DRLs—https://j-rime.qst.go.jp/report/JapanDRL2020_jp.pdf. Accessed 1 Apr 2025.

Precht H, Gerke O, Rosendahl K, Tingberg A, Waaler D. Digital radiography: optimization of image quality and dose using multi-frequency software. Pediatr Radiol. 2012;42:1112–8.

Article  CAS  PubMed  Google Scholar 

Ali AM, Hogg P, Abuzaid M, England A. Impact of acquisition parameters on dose and image quality optimisation in paediatric pelvis radiography—a phantom study. Eur J Radiol. 2019;118:130–7.

Article  Google Scholar 

Butler ML, Brennan PC. Nonselective filters offer important dose-reducing potential in radiological examination of the paediatric pelvis. J Med Imaging Radiat Sci. 2009;40(1):15–23.

Article  PubMed  Google Scholar 

Nagasawa SY (2002) Improvement of the Schuneffe's method for paired comparisons. Kansei Eng Int 3(3): 47-56.

Shiraishi J, Fukuoka D, Hara T, Abe H. Basic concepts and development of an all-purpose computer interface for ROC/FROC observer study. Radiol Phys Technol. 2013;6:35–41.

Article  PubMed  Google Scholar 

Shiraishi J, Okazaki Y, Goto M. Image evaluation with paired comparison method using automatic analysis software: comparison of CT images with simulated levels of exposure dose. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2019;75(1):32–9 (in Japanese).

Article  PubMed  Google Scholar 

Kawashima H, Ichikawa K, Nagasou D, Hattori M. X-ray dose reduction using additional copper filtration for abdominal digital radiography: evaluation using signal difference-to-noise ratio. Physica Med. 2017;34:65–71.

Article  Google Scholar 

Pascoal A, Lawinski CP, Honey I, Blake P. Evaluation of a software package for automated quality assessment of contrast detail images—comparison with subjective visual assessment. Phys Med Biol. 2005;50(23):5743.

Article  CAS  PubMed  Google Scholar 

Khong PL, Ringertz H, Donoghue V, Frush D, Rehani M, Appelgate K, Sanchez R. ICRP publication 121: radiological protection in paediatric diagnostic and interventional radiology. Ann ICRP. 2013;42(2):1–63.

Article  PubMed  Google Scholar 

Seidenbusch MC, Schneider K. Conversion coefficients for determining organ doses in paediatric pelvis and hip joint radiography. Pediatr Radiol. 2014;44:1110–23.

Article  PubMed  Google Scholar 

Reis C, Gonçalves J, Klompmaker C, Bárbara AR, Bloor C, Hegarty R, Hogg P (2014) Image quality and dose analysis for a PA chest X-ray: comparison between AEC mode acquisition and manual mode using the 10 kVp ‘rule’. Radiography 20(4): 339–345.

Coffey H, Chanopensiri V, Ly B, Nguyen D. Comparing 10 kVp and 15% rules in extremity radiography. Radiol Technol. 2020;91(6):516–24.

PubMed  Google Scholar 

Papadakis AE, Giannakaki V, Hatzidaki E, Damilakis J (2023) The effect of added filtration on radiation dose and image quality in digital radiography of newborns. Pediatric Radiology, 1–9.

Yasin MS, Al Karmi J, Suleiman DO, Raja YM, Alshrouf MA, Abu Halaweh A, Samarah O (2023) Acetabular index as an indicator of Pavlik harness success in grade I developmental dysplasia of the hip: a retrospective study. J Child Orthopaedics 17(6): 598–606.

Protection R. ICRP publication 103. Ann ICRP 2007;37(2.4):2.

Asada Y, Kondo Y, Kobayashi M, Kobayashi K, Ichikawa T, Matsunaga Y. Proposed diagnostic reference levels for general radiography and mammography in Japan. J Radiol Prot. 2020;40(3):867.

Article  PubMed  Google Scholar 

Vogel E, Leaver T, Wall F, Johnson B, Uglow M, Aarvold A. Repeated pelvic radiographs in infants, after harness treatment for developmental dysplasia of the hip, carry very low radiation risk. Indian J Orthopaedics. 2021;55:1543–8.

Article  Google Scholar 

Comments (0)

No login
gif