Development of estimation method for T and T values using the relaxivity of contrast agent and coagulant for a magnetic resonance imaging phantom

Bernard CP, Liney GP, Manton DJ, Turnbull LW, Langton CM. Comparison of fat quantification methods: a phantom study at 3.0T. J Magn Reson Imaging. 2008;27:192–7. https://doi.org/10.1002/jmri.21201.

Article  PubMed  Google Scholar 

Ocak I, Bernardo M, Metzger G, Barrett T, Pinto P, Albert PS, Choyke PL. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am J Roentgenol. 2007;189:849. https://doi.org/10.2214/AJR.06.1329.

Article  Google Scholar 

Kang SR, Kim HW, Kim HS. Evaluating the relationship between dynamic contrast-enhanced MRI (DCE-MRI) parameters and pathological characteristics in breast cancer. J Magn Reson Imaging. 2020;52:1360–73. https://doi.org/10.1002/jmri.27241.

Article  PubMed  Google Scholar 

Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med. 2005;54:507–12. https://doi.org/10.1002/mrm.20605.

Article  PubMed  Google Scholar 

Cercignani M, Horsfield MA. The physical basis of diffusion-weighted MRI. J Neurol Sci. 2001;186(Suppl 1):S11–4. https://doi.org/10.1016/S0022-510X(01)00486-5.

Article  PubMed  Google Scholar 

Antoniou A, Damianou C. MR relaxation properties of tissue-mimicking phantoms. Ultrasonics. 2022;119:106600. https://doi.org/10.1016/j.ultras.2021.106600.

Article  CAS  PubMed  Google Scholar 

Drakos T, Giannakou M, Menikou G, Constantinides G, Damianou C. Characterization of a soft tissue-mimicking agar/wood powder material for MRgFUS applications. Ultrasonics. 2021;113:106357. https://doi.org/10.1016/j.ultras.2021.106357.

Article  CAS  PubMed  Google Scholar 

Ueda K, Yanagawa M, Ueguchi T, Satoh Y, Kawai M, Gyobu T, Sumikawa H, Honda O, Tomiyama N. Paradoxical signal pattern of mediastinal cysts on T2-weighted MR imaging: phantom and clinical study. Eur J Radiol. 2014;83:1016–21. https://doi.org/10.1016/j.ejrad.2014.03.004.

Article  PubMed  Google Scholar 

You SH, Kim B, Kim BK, Suh SI. MR imaging for differentiating contrast staining from hemorrhagic transformation after endovascular thrombectomy in acute ischemic stroke: phantom and patient study. Am J Neuroradiol. 2018;39(12):2313–9. https://doi.org/10.3174/ajnr.A5848.

Article  PubMed  PubMed Central  Google Scholar 

Herlihy AH, Oatridge A, Curati WL, Puri BK, Bydder GM, Hajnal JV. FLAIR imaging using nonselective inversion pulses combined with slice excitation order cycling and k-space reordering to reduce flow artifacts. Magn Reson Med. 2001;46:354–64. https://doi.org/10.1002/mrm.1198.

Article  CAS  PubMed  Google Scholar 

Antoniou A, Georgiou L, Christodoulou T, Panayiotou N, Ioannides C, Zamboglou N, Damianou C. MR relaxation times of agar-based tissue-mimicking phantoms. J Appl Clin Med Phys. 2022;23: e13533. https://doi.org/10.1002/acm2.13533.

Article  PubMed  PubMed Central  Google Scholar 

Gatidis S, Schmidt H, Martirosian P, Schwenzer NF. Development of an MRI phantom for diffusion-weighted imaging with independent adjustment of apparent diffusion coefficient values and T2 relaxation times. Magn Reson Med. 2014;72:459–63. https://doi.org/10.1002/mrm.24944.

Article  PubMed  Google Scholar 

Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630–8. https://doi.org/10.1103/PhysRev.94.630.

Article  CAS  Google Scholar 

Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91. https://doi.org/10.1063/1.1716296.

Article  CAS  Google Scholar 

Helm L. Relaxivity in paramagnetic systems: theory and mechanisms. Prog Nucl Magn Reson Spectrosc. 2006;49:45–64. https://doi.org/10.1016/j.pnmrs.2006.03.003.

Article  CAS  Google Scholar 

Fullerton GD, Ord VA, Cameron IL. An evaluation of the hydration of lysozyme by an NMR titration method. Biochim Biophys Acta. 1986;869:230–46. https://doi.org/10.1016/0167-4838(86)90063-4.

Article  CAS  PubMed  Google Scholar 

Uzuhashi Y, Taki C. Kanten no shurui, tokusei to shiyō hōhō. J Cook Sci Jpn. 2005;38:292–7. https://doi.org/10.11402/cookeryscience1995.38.3_292.

Baron P, Deckers R, Knuttel FM, Bartels LW. T1 and T2 temperature dependence of female human breast adipose tissue at 1.5 T: groundwork for monitoring thermal therapies in the breast. NMR Biomed. 2015;28(11):1463–70. https://doi.org/10.1002/nbm.3410.

Article  PubMed  Google Scholar 

Nelson TR, Tung SM. Temperature dependence of proton relaxation times in vitro. Magn Reson Imaging. 1987;5:189–99. https://doi.org/10.1016/0730-725X(87)90020-8.

Article  CAS  PubMed  Google Scholar 

de Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology. 2004;230(3):652–9. https://doi.org/10.1148/radiol.2303021331.

Article  PubMed  Google Scholar 

Stanisz Greg J, Odrobina Ewa E, Joseph P, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med. 2005;54(3):507–12. https://doi.org/10.1002/mrm.20605.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif