Melatonin administration on bone properties of animals under hypoestrogenism: A systematic review

Critchlow AJ, et al. The role of estrogen in female skeletal muscle aging: A systematic review. Maturitas. 2023. https://doi.org/10.1016/j.maturitas.2023.107844.

Medina-Contreras JML, et al. Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol Cell Biochem. 2020. https://doi.org/10.1007/s11010-020-03879-4.

Zuo Q, et al. Pathway preferential estrogens prevent hepatosteatosis due to ovariectomy and high-fat diets. Nutrients. 2021. https://doi.org/10.3390/nu13103334.

Baxi D, et al. Melatonin supplementation therapy as a potent alternative to ERT in ovariectomized rats. Climacteric. 2012. https://doi.org/10.3109/13697137.2011.618565.

Steiner BM, Berry DC. The regulation of adipose tissue health by estrogens. Front Endocrinol. 2022. https://doi.org/10.3389/fendo.2022.889923.

Pejon TMM, et al. Effect of 12-wk training in ovariectomised rats on PGC-1α, NRF-1 and energy substrates. Int J Sports Med. 2022. https://doi.org/10.1055/a-1717-1693.

Pejon TMM, et al. Effects of moderate–intensity physical training on skeletal muscle substrate transporters and metabolic parameters of ovariectomized rats. Metabolites. 2022. https://doi.org/10.3390/metabo12050402.

Ozturk S, et al. Resveratrol prevents ovariectomy-induced bone quality deterioration by improving the microarchitectural and biophysicochemical properties of bone. J Bone Miner Metab. 2023. https://doi.org/10.1007/s00774-023-01416-z.

Lin Z, et al. Leptin and melatonin’s effects on OVX rodents’ bone metabolism. Front Endocrinol. 2023. https://doi.org/10.3389/fendo.2023.1185476.

Li T, et al Daytime administration of melatonin has better protective effects on bone loss in ovariectomized rats. J Orthop. 2023. https://doi.org/10.1186/s13018-023-03695-8.

Guan H, et al. Melatonin increases bone mass in normal, perimenopausal, and postmenopausal osteoporotic rats via the promotion of osteogenesis. J Transl Med. 2022. https://doi.org/10.1186/s12967-022-03341-7.

Bao T et al. Can melatonin improve the osteopenia of perimenopausal and postmenopausal women? A meta-analysis. Int J Endocrinol. 2019. https://doi.org/10.1155/2019/5151678.

Office of the Surgeon General (US). Bone Health and Osteoporosis: a report of the surgeon general. Rockville (MD): Office of the Surgeon General (US); 2004. Available from: https://www.ncbi.nlm.nih.gov/books/NBK45513/.

Gao S, Zhao Y. Quality of life in postmenopausal women with osteoporosis: a systematic review and meta-analysis. Qual Life Res. 2023. https://doi.org/10.1007/s11136-022-03281-1.

Yang Z, et al. Estradiol therapy and breast cancer risk in perimenopausal and postmenopausal women: a systematic review and meta-analysis. Gynecol Endocrinol. 2017. https://doi.org/10.1080/09513590.2016.1248932.

Shufelt CL, Manson JE. Menopausal hormone therapy and cardiovascular disease: the role of formulation, dose, and route of delivery. J Clin Endocrinol Metab. 2021. https://doi.org/10.1210/clinem/dgab042.

Hardeland R. Aging, melatonin, and the pro-and anti-inflammatory networks. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20051223.

Borges LS, et al. Melatonin decreases muscular oxidative stress and inflammation induced by strenuous exercise and stimulates growth factor synthesis. J Pineal Res. 2015. https://doi.org/10.1111/jpi.12202.

Cipolla‐Neto J, et al. Melatonin, energy metabolism, and obesity: a review. J Pineal Res. 2014. https://doi.org/10.1111/jpi.12137.

Bagherifard A, et al. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporosis Int. 2023. https://doi.org/10.1007/s00198-023-06836-1.

Amstrup AK, et al. MelatoSnin and the skeleton. Osteoporosis Int. 2013. https://doi.org/10.1007/s00198-013-2404-8.

Choi JH, et al. Melatonin inhibits osteoclastogenesis and bone loss in ovariectomized mice by regulating PRMT1-Mediated signaling. Endocrinology. 2021. https://doi.org/10.1210/endocr/bqab057.

Malakoti F, et al. The role of melatonin in bone regeneration: A review of involved signaling pathways. Biochimie. 2022. https://doi.org/10.1016/j.biochi.2022.08.008.

Munmun F, et al. The role of MEK1/2 and MEK5 in melatonin‐mediated actions on osteoblastogenesis, osteoclastogenesis, bone microarchitecture, biomechanics, and bone formation. J Pineal Res. 2022. https://doi.org/10.1111/jpi.12814.

Macdonald IJ, et al. Melatonin inhibits osteoclastogenesis and osteolytic bone metastasis: implications for osteoporosis. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22179435.

Yeleswaram K, et al. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal Res. 1997, https://doi.org/10.1111/j.1600-079X.1997.tb00302.x.

Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010. https://doi.org/10.1074/jbc.R109.041087.

Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009. https://doi.org/10.1371/journal.pmed.1000097.

Akers J (2009) Systematic Reviews: CRD’s Guidance for Undertaking Reviews in Health Care. York, UK: CRD, University of York.

Hooijmans CR, et al (2014) SYRCLE’s risk of bias tool for animal studies. BMC medical research methodology. 2014. https://doi.org/10.1186/1471-2288-14-43.

Higgins JP, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343. https://doi.org/10.1136/bmj.d5928.

Ahmed HH, et al. Efficacy of newly synthesized melatonin derivatives as antiosteoporotic agents in ovariectomized rats. J Appl Sci Res. 2009.

Gürler EB, et al. Melatonin supports alendronate in preserving bone matrix and prevents gastric inflammation in ovariectomized rats. Cell Biochem Funct. 2019. https://doi.org/10.1002/cbf.3379.

Sun T, et al. Melatonin improves the osseointegration of hydroxyapatite-coated titanium implants in senile female rats. Z Gerontol Geriatri. 2020. https://doi.org/10.1007/s00391-019-01640-1.

Tao ZS, et al. Rapamycin could increase the effects of melatonin against age-dependent bone loss. Z Gerontol Geriatri. 2020. https://doi.org/10.1007/s00391-019-01659-4.

Zhou W, et al. Melatonin increases bone mass around the prostheses of OVX Rats by ameliorating mitochondrial oxidative stress via the SIRT3/SOD2 signaling pathway. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/4019619.

Zhou MS, Tao ZS. Systemic administration with melatonin in the daytime has a better effect on promoting osseointegration of titanium rods in ovariectomized rats. Bone Jt Res. 2022. https://doi.org/10.1155/2019/4019619.

Chen W, et al. Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties. Free Radic Biol Med. 2020. https://doi.org/10.1016/j.freeradbiomed.2019.10.412.

Chen W, et al. Melatonin improves the resistance of oxidative stress-induced cellular senescence in osteoporotic bone marrow mesenchymal stem cells. Oxid Med Cell Longev. 2022. https://doi.org/10.1155/2022/7420726.

Liu H, Yang M. Melatonin alleviates hydrogen peroxide induced oxidative damage in MC3T3-E1 cells via SIRT1/p66SHC pathway and promotes osteogenesis. Free Radic Res. 2021. https://doi.org/10.1080/10715762.2022.2037580.

Zheng S, et al. Melatonin accelerates osteoporotic bone defect repair by promoting osteogenesis–angiogenesis coupling. Front Endocrinol. 2022. https://doi.org/10.3389/fendo.2022.826660.

Huang X, et al. Melatonin suppresses bone marrow adiposity in ovariectomized rats by rescuing the imbalance between osteogenesis and adipogenesis through SIRT1 activation. J Orthop Transl. 2023. https://doi.org/10.1016/j.jot.2022.10.002.

Ladizesky MG, et al. Effect of melatonin on bone metabolism in ovariectomized rats. Life Sci. 2001. https://doi.org/10.1016/S0024-3205(01)01431-X.

Ladizesky MG, et al. Melatonin increases oestradiol‐induced bone formation in ovariectomized rats. J Pineal Res. 2003. https://doi.org/10.1034/j.1600-079X.2003.00021.x.

Ostrowska Z, et al. The influence of pinealectomy and melatonin administration on the dynamic pattern of biochemical markers of bone metabolism in experimental osteoporosis in the rat. Neuroendocrinology. 2002.

Oktem G, et al. Evaluation of the relationship between inducible nitric oxide synthase (iNOS) activity and effects of melatonin in experimental osteoporosis in the rat. Surg Radiol Anat. 2006. https://doi.org/10.1007/s00276-005-0065-9.

Uslu S, et al. Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats. Anal Quant Cytol Histol. 2007.

Murat Ö, Önder Ç. The effects of exogenous melatonin administration on bone in ovariectomized and pinealectomized rats. Clin Exp Obstet Gynecol. 2019. https://doi.org/10.12891/ceog4941.2019.

Sharan K, et al. Regulation of bone mass through pineal‐derived melatonin‐MT2 receptor pathway. J Pineal Res. 2017. https://doi.org/10.1111/jpi.12423.

Xu L, et al. Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcif Tissue Int. 2018. https://doi.org/10.1007/s00223-018-0428-y.

Da W, et al. Protective role of melatonin against postmenopausal bone loss via enhancement of citrate secretion from osteoblasts. Front Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.00667.

Zhou Y, et al. Melatonin up‐regulates bone marrow mesenchymal stem cells osteogenic action but suppresses their mediated osteoclastogenesis via MT 2 ‐inactivated NF‐κB pathway. Br J Pharmacol. 2020. https://doi.org/10.1111/bph.14972.

Huang J, et al. Combined effects of low-frequency pulsed electromagnetic field and melatonin on ovariectomy-induced bone loss in mice. Bioelectromagnetics. 2021. https://doi.org/10.1002/bem.22372.

Farlay D, et al. Bone remodeling and bone matrix quality before and after menopause in healthy women. Bone. 2019. https://doi.org/10.1016/j.bone.2019.08.003.

Wang L, et al. Mechanical regulation of bone remodeling. Bone Res. 2022. https://doi.org/10.1038/s41413-022-00190-4.

Taylor JG, Bushinsky DA. Calcium and phosphorus homeostasis. Blood Purif. 2009. https://doi.org/10.1159/000209740.

Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020. https://doi.org/10.1016/j.gene.2020.144855.

Andersen LPH, et al. The safety of melatonin in humans. Clin Drug Investig. 2016. https://doi.org/10.1007/s40261-015-0368-5.

Treister-Goltzman Y, Peleg R. Melatonin and the health of menopausal women: a systematic review. J Pineal Res. 2021. https://doi.org/10.1111/jpi.12743.

Comments (0)

No login
gif