The influence of chlorine compounds on the oxidation of nitrite and hydrogen sulfide ions by phototrophic sulfur bacteria

Biletsky, V. S. (2004). Mala girnycha encyklopediya [Small mining encyclopedia]. Donbas, Donetsk (in Ukrainian).

Bremer, E., & Krämer, R. (2019). Responses of microorganisms to osmotic stress. Annual Review of Microbiology, 73, 313–334.

Camargo, J., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831–849.

Corvino, A., & Caliendo, G. (2024). Hydrogen sulfide (H2S)-donor molecules: Chemical, biological, and therapeutical tools. International Journal of Molecular Sciences, 25(14), 7932.

Dahl, C. (2017). Sulfur metabolism in phototrophic bacteria. Modern topics in the phototrophic prokaryotes. Hallenbeck, P. C. (ed.). Springer, Cham. Pp. 27–66.

Fang, Q., Xu, W., Yan, Z., & Qian, L. (2018). Effect of potassium chlorate on the treatment of domestic sewage by achieving shortcut nitrification in a constructed rapid infiltration system. International Journal of Environmental Research and Public Health, 15(4), 670–681.

Garrity, G. M., Holt, J. G., Overmann, J., Pfennig, N., Gibson, J., & Gorlenko, V. M. (2001). Bergey’s manual of systematic bacteriology. Phylum BXI. Chlorobi phy. nov. Boone, D. R., Castenholz, R. W., Garrity, G. M. (Eds.). Springer, New York.

Garrity, G., Brenner, D. J., Krieg, N. R., & Staley, J. R. (2005). Bergey’s manual of systematic bacteriology. Vol. 2. The Proteobacteria. Part B: The Gammaproteobacteria. Springer, Boston.

George, D. M., Vincent, A. S. & Mackey, H. R. (2020). An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable resource recovery. Biotechnology Reports, 28, e00563.

Gonchar, M. V. (1998). Chutlyvyi metod kil'’kisnogo vyznachennia peroksydu vodniu ta substrativ oksydaz u biologichnykh obektakh [Sensitive method for quantitative determination of hydrogen peroxide and oxidase substrates in biological objects]. The Ukrainian Biochemical Journal, 70(5), 157–163 (in Ukrainian).

Gorishniy, M., Gudz, S., & Нnatush, S. (2008). Metabolizm gliukozy ta glikogenu u klitynakh zelenykh fotosyntezuval’nykh sirkovykh bakteriy Chlorobium limicola Ya-2002 [Glucose and glycogen metabolism in cells of green photosynthetic sulfur bacteria Chlorobium limicola Ya-2002]. Visnyk of Lviv University, Biological Series, 46, 129–136 (in Ukrainian).

Gorishniy, M., Gudz, S., & Нnatush, S. (2009). Metabolizm vuglevodiv u klitynakh zelenykh sirkovykh bakteriy Chlorobium limicolа Ya-2002 [Metabolism of carbohydrates in the cells of green sulfur bacteria Chlorobium limicolа Ya-2002]. The Ukrainian Biochemical Journal, 81(5), 26–33 (in Ukrainian).

Granger, D. L., Taintor, R. R., Boockvar, K. S., & Hibbs, J. B. (1996). Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymology, 268, 142–151.

Griffin, B. M., Schott, J., & Schink, B. (2007). Nitrite, an electron donor for anoxygenic photosynthesis. Science, 316(5833), 1870.

Gudz, S. P., Нnatush, S. O., Yavorska, G. V., Bilinska, I. S., & Borsukevych, B. M. (2014). Praktykum z mikrobiologiyi [Workshop on microbiology]. Ivan Franko National University of Lviv, Lviv (in Ukrainian).

Hallenbeck, P. C. (Ed.). (2017). Modern topics in the phototrophic prokaryotes. Metabolism, bioenergetics, and omics. Springer, Cham.

Halushka, A. A., & Gudz, S. P. (2009). Strukturno-funkcional’ni zminy v klitynakh mikroorganizmiv pry diyi gidrogen sul’fidu [Structural and functional changes in the cells of microorganisms under the influence of hydrogen sulfide]. Studia Biologica, 3(2), 141–148 (in Ukrainian).

Hemp, J., Lücker, S., Schott, J., Pace, L. A., Johnson, J. E., Schink, B., Daims, H., & Fischer, W. W. (2016). Genomics of a phototrophic nitrite oxidizer: Insights into the evolution of photosynthesis and nitrification. The International Society for Microbial Ecology Journal, 10, 2669–2678.

Imhoff, J. F. (2006). The phototrophic alpha-proteobacteria. Prokaryotes, 5, 41–64.

Imhoff, J. F. (2021). Editorial for the special issue: Advances in the biology of phototrophic bacteria. Microorganisms, 9(10), 2119.

Kamaraj, S.-K., & Rusyn, I. B. (2024). Photosynthesis-assisted energy generation: From fundamentals to lab scale and in-field applications. John Wiley & Sons Inc, New York.

Kim, M., Choi, N., Choi, E., & Lee, E.-J. (2023). ClC chloride channels in gram-negative bacteria and its role in the acid resistance systems. Journal of Microbiology and Biotechnology, 33(7), 857–863.

Kit, L. Y., & Gudz, S. P. (2007). Purpurovi sirkobakteriyi z vodoym Javorivs’kogo rodovyshha sirky [Purple sulfur bacteria from reservoirs of the Yavoriv sulfur deposit]. Mikrobiolohichnyi Zhurnal, 69(1), 12–19 (in Ukrainian).

Kochmar, I. M., Karabyn, V. V., & Kordan, V. M. (2024). Ecological and geochemical aspects of thermal effects on argillites of the Lviv-Volyn Coal Basin spoil tips. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 100–107.

Kochmar, I., & Karabyn, V. (2023). Water extracts from waste rocks of the coal industry of Chernvonograd mining area (Ukraine) – problems of environmental safety and civil protection. Ecological Engineering and Environmental Technology, 24(1), 247–255.

Kozlova, I. P., Radchenko, O. S., Stepura, L. H., Kondratyuk, T. O., & Pilyashenko-Novokhatnyy, A. I. (2008). Heokhimichna diyalnist’ mikroorhanizmiv ta yiyi prykladni aspekty [Geochemical activity of microorganisms and its applied aspects]. Naukova Dumka, Kyiv (in Ukrainian).

Kumar, V., Singh, B., van Belkum, M. J., Diep, D. B., Chikindas, M. L., Ermakov, A. M., & Kumar Tiwari, S. (2021). Halocins, natural antimicrobials of Archaea: Exotic or special or both? Biotechnology Advances, 53, 107834.

Kurta, S. A. (2009). Himija i tehnologija hlororganichnyh spoluk [Chemistry and technology of organochlorine compounds]. Plaj, Ivano-Frankivsk (in Ukrainian).

Kuypers, M., Marchant, H., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263–276.

Lengeler, J., Drevs, G., & Shlegel, G. (1999). Biology of the Prokaryotes. Georg Thieme Verlag, Stuttgart.

Li, J., Göbel, F., Hsu, H. Y., Koch, J. N., Hager, N., Flegler, W. A., Tanabe, T. S., & Dahl, C. (2024). YeeE-like bacterial SoxT proteins mediate sulfur import for oxidation and signal transduction. Communications Biology, 7(1), 1548.

Martínez-Espinosa, R. M. (2024). Halocins and C50 carotenoids from Haloarchaea: Potential natural tools against cancer. Marine Drugs, 22(10), 448.

Martínez-Jardines, M., Oltehua-López, O., Martínez-Hernández, S., Texier, A. C., & de María Cuervo-López, F. (2025). Relationship assessment of microbial community and cometabolic consumption of 2-chlorophenol. Applied Microbiology and Biotechnology, 109(1), 22.

McGrath, J. E., & Harfoot, C. G. (1997). Reductive dehalogenation of halocarboxylic acids by the phototrophic genera Rhodospirillum and Rhodopseudomonas. Applied and Environmental Microbiology, 63(8), 3333–3335.

Moroz, O. M., Yavorska, H. V., & Hnatush, S. O. (2023). Transformuvannia spoluk sul’furu ta nitrogenu sul’fidogennymy ta fototrofnymy bakteriyamy za vplyvu natriy fluorydu ta kaliy bromidu [Transformation of sulfur and nitrogen compounds by sulfidogenic and phototrophic bacteria under the influence of sodium fluoride and potassium bromide]. Ecology and Noospherology, 34(1), 23–34 (in Ukrainian).

Moroz, O. M., Zvir, G. I., & Hnatush, S. O. (2021). Nitrites oxidation by phototrophic bacteria of Chlorobium, Thiocapsa and Lamprocystis genera under the influence of inorganic pollutants. Biosystems Diversity, 29(1), 39–46.

Morrison, H. M., & Bose, A. (2024). Purple non-sulfur bacteria for biotechnological applications. Journal of Industrial Microbiology and Biotechnology, 52, 1367–5435.

Murali, R., Hemp, J., & Gennis, R. B. (2022). Evolution of quinol oxidation within the heme‑copper oxidoreductase superfamily. Biochimica et Biophysica Acta – Bioenergetics, 1863(8), 148907.

Murali, R., Pace, L. A., Sanford, R. A., Ward, L. M., Lynes, M. M., Hatzenpichler, R., Lingappa, U. F., Fischer, W. W., Gennis, R. B., & Hemp, J. (2024). Diversity and evolution of nitric oxide reduction in Bacteria and Archaea. Proceedings of the National Academy of Sciences of the United States of America, 121(26), e2316422121.

Olmo-Mira, M. F., Cabello, P., Pino, C., Martı´nez-Luque, M., Richardson, D. J., Castillo, F., Roldan, M. D., & Moreno-Vivian, C. (2006). Expression and characterization of the assimilatory NADH nitrite reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1. Archives of Microbiology, 186, 339–344.

Palencia, M., Lerma, T. A., Garcés, V., Mora, M. A., Martínez, J. M., & Palencia, S. L. (2021). Passive sampler of organochloride compounds in water and air. Eco-friendly functional polymers. Advances in Green and Sustainable Chemistry, 20, 297–325.

Petrovska, I. R., Salyha, Y. Т., & Vudmaska, І. V. (2022). Statystychni metody v biologichnykh doslidzhenniakh [Statistical methods in biological research]. Agrarna Nauka, Kyiv (in Ukrainian).

Proctor, L. M. (1997). Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquatic Microbial Ecology, 12, 105–113.

Roessler, M., Sewald, X., & Müller, V. (2003). Chloride dependence of growth in bacteria. FEMS Microbiology Letters, 225(1), 161–165.

Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., & Thompson, F. (Eds.). (2014). The procaryotes. Prokaryotic physiology and biochemistry. Springer-Verlag, Heidelberg, Berlin.

Saini, A., Kumar, A., Singh, G., & Giri, S. K. (2023). Survival strategies and stress adaptations in halophilic Archaebacteria. Microbial Stress Response: Mechanisms and Data Science. American Chemical Society Symposium Series, 1434(1), 1–21.

Schott, J., Griffin, B. M., & Schink, B. (2010). Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17. Microbiology, 156, 2428–2437.

Sepúlveda-Muñoz, C. A., de Godos, I., & Muñoz, R. (2023). Wastewater treatment using photosynthetic microorganisms. Symmetry, 15(2), 525.

Tanabe, T. S., Bach, E., D’Ermo, G., Mohr, M. G., Hager, N., Pfeiffer, N., Guiral, M., & Dahl, C. (2024). A cascade of sulfur transferases delivers sulfur to the sulfur-oxidizing heterodisulfide reductase-like complex. Protein Science, 33(6), e5014.

Tanaka, Y., Fukumori, Y., & Yamanaka, T. (1983). Purification of cytochrome a1c1 from Nitrobacter agilis and characterization of nitrite oxidation system of the bacterium. Archives of Microbiology, 135, 265–271.

Tarabas, O. V., Hnatush, S. O., Moroz, O. M., & Kovalchuk, M. M. (2019b). Wastewater bioremediation with using of phototrophic non-sulfur bacteria Rhodopseudomonas yavorovii IMV B-7620. Ecology and Noospherology, 30(2), 63–67.

Tarabas, О. V., Hnatush, S. О., & Мoroz, О. М. (2019a). The usage of nitrogen compounds by purple non-sulfur bacteria of the Rhodopseudomonas genus. Regulatory Mechanisms in Biosystems, 10(1), 79–82.

Teke, G. M., Cho, B. A., Bosman, C. E., Mapholi, Z., Zhang, D., & Pott, R. W. M. (2024). Towards industrial biological hydrogen production: A review. World Journal of Microbiology and Biotechnology, 40, 37.

Tong, C., Hu, G., Ji, B., Li, A., Zhang, X., & Liu, Y. (2025). Light intensity-regulated glycogen synthesis and pollutant removal in microalgal-bacterial granular sludge for wastewater treatment. Water Research, 271, 122988.

Tsuji, J. M., Shaw, N. A., Nagashima, S., Venkiteswaran, J. J., Schiff, S. L., Watanabe, T., Fukui, M., Hanada, S., Tank, M., & Neufeld, J. D. (2024). Anoxygenic phototroph of the Chloroflexota uses a type I reaction centre. Nature, 627(8005), 915–922.

Xie, H., Lyratzakis, A., Khera, R., Koutantou, M., Welsch, S., Michel, H., & Tsiotis, G. (2023). Cryo-EM structure of the whole photosynthetic reaction center apparatus from the green sulfur bacterium Chlorobaculum tepidum. Proceedings of the National Academy of Sciences of the United States of America, 120(5), e2216734120.

Yang, Y., & Zhu, F. (2024). An overview of electrokinetically enhanced chemistry technologies for organochlorine compounds (OCs) remediation from soil. Environmental Science and Pollution Research International, 31(1), 529–548.

Comments (0)

No login
gif