Barker, A. L., Pawlak, J., Duke, S. O., Beffa, R., Tranel, P. J., Wuerffel, J., Young, B., Porri, A., Liebl, R., Aponte, R., Findley, D., Betz, M., Lerchl, J., Culpepper, S., Bradley, K., & Dayan, F. E. (2023). Discovery, mode of action, resistance mechanisms, and plan of action for sustainable use of Group 14 herbicides. Weed Science, 71(3), 173–188.
Beckie, H. J. (2006). Herbicide-resistant weeds: management tactics and practices. Weed Technology, 20(3), 793–814.
Beligni, M. V., & Lamattina, L. (2002). Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant, Cell and Environment, 25(6), 737–748.
Clarke, A., Desikan, R., Hurst, R. D., Hancock, J. T., & Neill, S. J. (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. The Plant Journal, 24(5), 667–677.
Cüce, M., & Muslu, A. S. (2022). Sodium nitroprusside mediates attenuation of paraquat-mediated oxidative stress in Eruca sativa in vitro. Physiology and Molecular Biology of Plants, 28(1), 289–299.
De Michele, R., Vurro, E., Rigo, C., Costa, A., Elviri, L., Di Valentin, M., Careri, M., Zottini M., Di Toppi, L. S., & Lo Schiavo, F. (2009). Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiology, 150(1), 217–228.
Domingos, P., Prado, A. M., Wong, A., Gehring, C., & Feijo, J. A. (2015). Nitric oxide: A multitasked signaling gas in plants. Molecular Plant, 8(4), 506–520.
Ferreira, L. C., Cataneo, A. C., Remaeh, L. M. R., Corniani, N., de Fátima Fumis, T., de Souza, Y. A., Scavroni, J., & Soares, B. J. A. (2010). Nitric oxide reduces oxidative stress generated by lactofen in soybean plants. Pesticide Biochemistry and Physiology, 97(1), 47–54.
Filomeni, G., De Zio, D., & Cecconi, F. (2015). Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death and Differentiation, 22(3), 377–388.
Hancock, J. T. (2020). Nitric oxide signaling in plants. Plants, 9(11), 1550.
Kaya, C., Uğurlar, F., & Seth, C. S. (2024). Sodium nitroprusside modulates oxidative and nitrosative processes in Lycopersicum esculentum L. under drought stress. Plant Cell Reports, 43(6), 152.
Kraehmer, H., Laber, B., Rosinger, C., & Shulz, A. (2014). Herbicides as weed control agents: State of the art: I. Weed control research and safener technology: The path to modern agriculture. Plant Physiology, 166(3), 1119–1131.
Kumar, P., Tewari, R. K., & Sharma, P. N. (2010). Sodium nitroprusside-mediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. AoB Plants, 2010, plq002.
Li, Z. C., Ren, Q. W., Guo, Y., Ran, J., Ren, X. T., Wu, N. N., Xu, H.Y., Liu, X., & Liu, J. Z. (2021). Dual roles of GSNOR1 in cell death and immunity in tetraploid Nicotiana tabacum. Frontiers in Plant Science, 12, 596234.
Lin, A., Wang, Y., Tang, J., Xue, P., Li, C., Liu, L., Hu, B., Yang, F., Loake, G. J., & Chu, C. (2012). Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiology, 158(1), 451–464.
Lv, Q., Han, S., Wang. L., Xia, J., Li, P., Hu, R., Wang, J., Gao, L., Chen, Y., Wang, Y., Du, J., Bao, F., Hu, Y., Xu, X., Xiao, W., & He, Y. (2022). TEB/POLQ plays dual roles in protecting Arabidopsis from NO-induced DNA damage. Nucleic Acids Research, 50(12), 6820–6836.
Mandal, M., Sarkar, M., Khan, A., Biswas, M., Masi, A., Rakwal, R., Agrawal, G. K., Srivastava, A., & Sarkar, A. (2022). Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants–maintenance of structural individuality and functional blend. Advances in Redox Research, 5, 100039.
Morderer, Y. Y. (2023). What is missing to create new herbicides and solving the problem of resistance. Plant Physiology and Genetics, 55(5), 371–394.
Niyoifasha, C. J., Borena, B. M., Ukob, I. T., Minh, P. N., Al Azzawi, T. N. I., Imran, M., Ali, S., Inthavong, A., Mun, B.-G., Lee, I.-J., Khan, M., & Yun, B.-W. (2023). Alleviation of Hg-, Cr-, Cu-, and Zn-induced heavy metals stress by exogenous sodium nitroprusside in rice plants. Plants, 12(6), 1299.
Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvold, G., Powles, S. T., Burgos, N. R., Witt, W. W., & Barret, M. (2012). Reducing the risk of herbicide resistance: Best management practices and recommendation. Weed Science, 60(SP1), 31–62.
Parankusam, S., Adimulam, S. S., Bhatnagar-Mathur, P., & Sharma, K. K. (2017). Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Frontiers in Plant Science, 8, 1582.
Parveen, N., Kandhol, N., Sharma, S., Singh, V. P., Chauhan, D. K., Ludwig-Müller, J., Corpas, F. J., & Tripathi, D. K. (2022). Auxin crosstalk with reactive oxygen and nitrogen species in plant development and abiotic stress. Plant and Cell Physiology, 63(12), 1814–1825.
Pingarron-Cardenas, G., Onkokesung, N., Goldberg-Cavalleri, A., Lange, G., Dittgen, J., & Edwards, R. (2024). Selective herbicide safening in dicot plants: A case study in Arabidopsis. Frontiers in Plant Science, 14, 1335764.
Ponomareva, I. G., & Yukhymuk, V. V. (2023). Pryskorennia fitotoksychnoyi diyi herbitsydu aklonifenu za sumisnoho zastosuvannia z donorom NO nitroprusydom natriyu [Acceleration of herbicide aclonifen phytotoxic action by joint application with NO donor sodium nitroprusside]. Plant Physiology and Genetics, 55(5), 450–460 (in Ukrainian).
Ponomareva, I. G., Khandezhyna, M. V., & Radchenko, M. P. (2022). Pidvyshchennia fitotoksychnoyi diyi herbitsydu inhibitora protoporfirynohenoksydazy karfentrazonu ta herbitsydu klasu syntetychnykh auksyniv 2,4-d za sumisnoho zastosuvannia z donorom no nitroprusydom natriiu [Increase in the phytotoxic effect of protoporphyrinogen oxidase inhibiting herbicide carfentrazone and herbicide synthetic auxin 2, 4-D by joint use with the NO donor sodium nitroprusside]. Plant Physiology and Genetics, 54(5), 419–428 (in Ukrainian).
Qian, H., Chen, W., Li, J., Wang, J., Zhou, Z., Liu, W., & Fu, Z. (2009). The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquatic Toxicology, 92(4), 250–257.
Ramadan, A. A., Abd Elhamid, E. M., & Sadak, M. S. (2019). Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bulletin of the National Research Centre, 43, 118.
Sagisaka, S. (1976). The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiology, 57(2), 308–309.
Sami, F., Faizan, M., Faraz, A., Siddiqui, H., Yusuf, M., & Hayat, S. (2018). Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide, 73, 22–38.
Sheikhalipour, M., Kulak, M., Mohammadi, S. A., Esmaielpour, B., Nouraein, M., Kocak, M. Z., Farajzadeh, S. M., Gohari, Gh., Fotopoulos, V., & Vita, F. (2024). Foliar application of either melatonin or sodium nitpoprusside regulates the antioxidant status, and the morpho-physiological attributes and essential oil production in sage (Salvia officinalis L.) under salinity stress. Scientia Horticulturae, 323, 112526.
Siddiqui, M. H., Alamri, S. A., Al-Khaishany, M. Y., Al-Qutami, M. A., Ali, H. M., & Khan, M. N. (2017). Sodium nitroprusside and indole acetic acid improve the tolerance of tomato plants to heat stress by protecting against DNA damage. Journal of Plant Interactions, 12(1), 177–186.
Silva, K. S., Tabaldi, L. A., Rossato, L. V., Cavichioli, B. M., Basilio, V. B., & Machado, S. L. O. (2019). Contents of pigments and activity of antioxidant enzymes in rice plants pre-treated with sodium nitroprusside and exposed to clomazone. Planta Daninha, 37, e019185130.
Singh, H. P., Batish, D. R., Kaur, G., Arora, K., & Kohli, R. K. (2008). Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany, 63(1-3), 158–167.
Soares, C., Rodrigues, F., Sousa, B., Pinto, E., Ferreira, I. M., Pereira, R., & Fidalgo, F. (2021). Foliar application of sodium nitroprusside boosts Solanum lycopersicum L. tolerance to glyphosate by preventing redox disorders and stimulating herbicide detoxification pathways. Plants, 10(9), 1862.
Sung, C. H., & Hong, J. K. (2010). Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage. Plant Biotechnology Reports, 4, 243–251.
Sychuk, A. M. (2015). Uchast prohramovanoi zahybeli klityn v indukovanomu herbitsydamy patohenezi [The participation of programmed cell death in the herbicides induced pathogenesis]. Extended abstract of candidate thesis. Institute of Plant Physiology and Genetics, Kyiv, Ukraine (in Ukrainian).
Sychuk, A., Radchenko, M., & Morderer, Y. (2013). The increase of phytotoxic action of graminicide fenoxaprop-P-ethyl by NO donor sodium nitroprusside. Science and Education a New Dimension: Natural and Technical Sciences, I (2), 21.
Timilsina, A., Zhang, C., Pandey, B., Bizimana, F., Dong, W., & Hu, C. (2020). Potential pathway of nitrous oxide formation in plants. Frontiers in Plant Science, 11, 1177.
Traxler, C., Gaines, T. A., Küpper, A., Luemmen, P., & Dayan, F. E. (2023). The nexus between reactive oxygen species and the mechanism of action of herbicides. Journal of Biological Chemistry, 299(11). 105267.
Wang, Y., Loake, G. J., & Chu, C. (2013). Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Frontiers in Plant Science, 4, 314.
Wany, A., Kumari, A., & Gupta, K. J. (2017). Nitric oxide is essential for the development of aerenchyma in wheat roots under hypoxic stress. Plant, Cell and Environment, 40(12), 3002–3017.
Zhang, J. J., & Yang, H. (2021). Metabolism and detoxification of pesticides in plants. Science of the Total Environment, 790, 148034.
Zhang, W., Yu, P., Liu, W., Wang, L., Song, X., Yao, Y., Liu, X., & Meng, X. (2025). Mechanism of sodium nitroprusside regulating ginseng quality. Scientific Reports, 15(1), 1562.
Zhao, L., Deng, L., Zhang, Q., Jing, X., Ma, M., Yi, B., Wen, J., Ma, C., Tu, J., Fu, T., & Shen, J. (2018). Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 14(4), 702–714.
Zhao, Y., Ye, F., & Fu, Y. (2023). Research progress on the action mechanism of herbicide safeners: a review. Journal of Agricultural and Food Chemistry, 71(8), 3639–3650.
Zhou, B., Guo, Z., Xing, J., & Huang, B. (2005). Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. Journal of Experimental Botany, 56(422), 3223–3228.
Ziogas, V., Tanou, G., Belghazi, M., Filippou, P., Fotopoulos, V., Grigorios, D., & Molassiotis, A. (2015). Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in Citrus plants. Plant Molecular Biology, 89, 433–450.
Comments (0)