Liu J, Curtis EM, Cooper C, Harvey NC (2019) State of the art in osteoporosis risk assessment and treatment. J Endocrinol Invest 42:1149–1164. https://doi.org/10.1007/s40618-019-01041-6
Article CAS PubMed PubMed Central Google Scholar
Bow CH, Cheung E, Cheung CL et al (2012) Ethnic difference of clinical vertebral fracture risk. Osteoporos Int 23:879–885. https://doi.org/10.1007/s00198-011-1627-9
Article CAS PubMed Google Scholar
Felsenberg D, Silman AJ, Lunt M et al (2002) Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17:716–724. https://doi.org/10.1359/jbmr.2002.17.4.716
Article CAS PubMed Google Scholar
Robinson WA, Carlson BC, Poppendeck H et al (2020) Osteoporosis-related vertebral fragility fractures: a review and analysis of the American Orthopaedic Association’s own the bone database. Spine 45:E430-e438. https://doi.org/10.1097/BRS.0000000000003324
Johannesdottir F, Allaire B, Kopperdahl DL et al (2021) Bone density and strength from thoracic and lumbar CT scans both predict incident vertebral fractures independently of fracture location. Osteoporos Int 32:261–269. https://doi.org/10.1007/s00198-020-05528-4
Article CAS PubMed Google Scholar
Cosman F, Krege JH, Looker AC et al (2017) Spine fracture prevalence in a nationally representative sample of US women and men aged ≥40 years: results from the National Health and Nutrition Examination Survey (NHANES) 2013–2014. Osteoporos Int 28:1857–1866. https://doi.org/10.1007/s00198-017-3948-9
Article CAS PubMed PubMed Central Google Scholar
Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202. https://doi.org/10.1016/j.bone.2003.10.001
Article CAS PubMed Google Scholar
Chalhoub D, Orwoll ES, Cawthon PM et al (2016) Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone 92:100–106. https://doi.org/10.1016/j.bone.2016.08.014
Article PubMed PubMed Central Google Scholar
Löffler MT, Jacob A, Valentinitsch A, Rienmüller A, Zimmer C, Ryang YM, Baum T, Kirschke JS (2019) Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol 29:4980–4989. https://doi.org/10.1007/s00330-019-06018-w
Article PubMed PubMed Central Google Scholar
Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141
Raman SP, Chen Y, Schroeder JL, Huang P, Fishman EK (2014) CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Acad Radiol 21:1587–1596. https://doi.org/10.1016/j.acra.2014.07.023
Article PubMed PubMed Central Google Scholar
Wang H, Schabath MB, Liu Y et al (2015) Semiquantitative computed tomography characteristics for lung adenocarcinoma and their association with lung cancer survival. Clin Lung Cancer 16:e141-163. https://doi.org/10.1016/j.cllc.2015.05.007
Article PubMed PubMed Central Google Scholar
Zhao Y, Zhao T, Chen S et al (2022) Fully automated radiomic screening pipeline for osteoporosis and abnormal bone density with a deep learning-based segmentation using a short lumbar mDixon sequence. Quant Imaging Med Surg 12:1198–1213. https://doi.org/10.21037/qims-21-587
Article PubMed PubMed Central Google Scholar
Burian E, Subburaj K, Mookiah MRK et al (2019) Texture analysis of vertebral bone marrow using chemical shift encoding-based water-fat MRI: a feasibility study. Osteoporos Int 30:1265–1274. https://doi.org/10.1007/s00198-019-04924-9
Article CAS PubMed PubMed Central Google Scholar
Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102:1143–1158. https://doi.org/10.1016/j.ijrobp.2018.05.053
Article PubMed PubMed Central Google Scholar
Valentinitsch A, Trebeschi S, Kaesmacher J, Lorenz C, Löffler MT, Zimmer C, Baum T, Kirschke JS (2019) Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 30:1275–1285. https://doi.org/10.1007/s00198-019-04910-1
Article CAS PubMed PubMed Central Google Scholar
Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148. https://doi.org/10.1002/jbmr.5650080915
Article CAS PubMed Google Scholar
Prince RL, Lewis JR, Lim WH, Wong G, Wilson KE, Khoo BC, Zhu K, Kiel DP, Schousboe JT (2019) Adding lateral spine imaging for vertebral fractures to densitometric screening: improving ascertainment of patients at high risk of incident osteoporotic fractures. J Bone Miner Res 34:282–289. https://doi.org/10.1002/jbmr.3595
Duan S, Hua Y, Cao G, Hu J, Cui W, Zhang D, Xu S, Rong T, Liu B (2023) Differential diagnosis of benign and malignant vertebral compression fractures: comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics. Eur J Radiol 165:110899. https://doi.org/10.1016/j.ejrad.2023.110899
Biamonte E, Levi R, Carrone F et al (2022) Artificial intelligence-based radiomics on computed tomography of lumbar spine in subjects with fragility vertebral fractures. J Endocrinol Invest 45:2007–2017. https://doi.org/10.1007/s40618-022-01837-z
Article CAS PubMed Google Scholar
Prevrhal S, Fox JC, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30:1–8. https://doi.org/10.1118/1.1521940
Wang M, Chen X, Cui W, Wang X, Hu N, Tang H, Zhang C, Shen J, Xie C, Chen X (2023) A computed tomography-based radiomics nomogram for predicting osteoporotic vertebral fractures: a longitudinal study. J Clin Endocrinol Metab 108:e283–e294. https://doi.org/10.1210/clinem/dgac722
Chee CG, Yoon MA, Kim KW, Ko Y, Ham SJ, Cho YC, Park B, Chung HW (2021) Combined radiomics-clinical model to predict malignancy of vertebral compression fractures on CT. Eur Radiol 31:6825–6834. https://doi.org/10.1007/s00330-021-07832-x
Ahn SY, Park CM, Park SJ, Kim HJ, Song C, Lee SM, McAdams HP, Goo JM (2015) Prognostic value of computed tomography texture features in non-small cell lung cancers treated with definitive concomitant chemoradiotherapy. Invest Radiol 50:719–725. https://doi.org/10.1097/RLI.0000000000000174
Article CAS PubMed Google Scholar
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169
Yang H, Yan S, Li J, Zheng X, Yao Q, Duan S, Zhu J, Li C, Qin J (2022) Prediction of acute versus chronic osteoporotic vertebral fracture using radiomics-clinical model on CT. Eur J Radiol 149:110197. https://doi.org/10.1016/j.ejrad.2022.110197
Xiang Y, Yingling VR, Malique R, Li CY, Schaffler MB, Raphan T (2007) Comparative assessment of bone mass and structure using texture-based and histomorphometric analyses. Bone 40:544–552. https://doi.org/10.1016/j.bone.2006.08.015
Muehlematter UJ, Mannil M, Becker AS, Vokinger KN, Finkenstaedt T, Osterhoff G, Fischer MA, Guggenberger R (2019) Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur Radiol 29:2207–2217. https://doi.org/10.1007/s00330-018-5846-8
Comments (0)