MeCP2 and non-CG DNA methylation stabilize the expression of long genes that distinguish closely related neuron types

Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allaway, K. C. et al. Genetic and epigenetic coordination of cortical interneuron development. Nature 597, 693–697 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng, S. et al. Vision-dependent specification of cell types and function in the developing cortex. Cell 185, 311–327 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clemens, A. W. & Gabel, H. W. Emerging insights into the distinctive neuronal methylome. Trends Genet. 36, 816–832 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Mendoza, A. et al. The emergence of the brain non-CpG methylation system in vertebrates. Nat. Ecol. Evol. 5, 369–378 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tillotson, R. & Bird, A. The molecular basis of MeCP2 function in the brain. J. Mol. Biol. 432, 1602–1623 (2020).

Article  CAS  PubMed  Google Scholar 

Boxer, L. D. et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol. Cell 77, 294–309 (2020).

Article  CAS  PubMed  Google Scholar 

Chen, L. et al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proc. Natl Acad. Sci. USA 112, 5509–5514 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clemens, A. W. et al. MeCP2 represses enhancers through chromosome topology-associated DNA methylation. Mol. Cell 77, 279–293 (2020).

Article  CAS  PubMed  Google Scholar 

Gabel, H. W. et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522, 89–93 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014).

Article  CAS  PubMed  Google Scholar 

Tillotson, R. et al. Neuronal non-CG methylation is an essential target for MeCP2 function. Mol. Cell 81, 1260–1275 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christian, D. L. et al. DNMT3A haploinsufficiency results in behavioral deficits and global epigenomic dysregulation shared across neurodevelopmental disorders. Cell Rep. 33, 108416 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tudor, M., Akbarian, S., Chen, R. Z. & Jaenisch, R. Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc. Natl Acad. Sci. USA 99, 15536–15541 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamagami, N. et al. NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons. Mol. Cell 83, 1412–1428 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

Article  CAS  PubMed  Google Scholar 

Van Esch, H. et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77, 442–453 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson, B. S. et al. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat. Med. 23, 1203–1214 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sugino, K. et al. Cell-type-specific repression by methyl-CpG-binding protein 2 is biased toward long genes. J. Neurosci. 34, 12877–12883 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Y.-T., Goffin, D., Johnson, B. S. & Zhou, Z. Loss of MeCP2 function is associated with distinct gene expression changes in the striatum. Neurobiol. Dis. 59, 257–266 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben-Shachar, S., Chahrour, M., Thaller, C., Shaw, C. A. & Zoghbi, H. Y. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum. Mol. Genet. 18, 2431–2442 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trostle, A. J. et al. A comprehensive and integrative approach to MeCP2 disease transcriptomics. Int. J. Mol. Sci. 24, 5122 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

Article  CAS  PubMed  Google Scholar 

Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif