Endocrine-disrupting chemicals and female reproductive health: a growing concern

Eckert-Lind, C. et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls. JAMA Pediatr. 174, e195881 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Euling, S. Y. et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings. Pediatrics 121, S172–S191 (2008).

Article  PubMed  Google Scholar 

Parent, A.-S. et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693 (2003).

Article  PubMed  Google Scholar 

Parent, A.-S., Franssen, D., Fudvoye, J., Gérard, A. & Bourguignon, J.-P. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: revision of human observations and mechanistic insight from rodents. Front. Neuroendocrinol. 38, 12–36 (2015).

Article  CAS  PubMed  Google Scholar 

Bräuner, E. V. et al. Trends in the incidence of central precocious puberty and normal variant puberty among children in Denmark, 1998 to 2017. JAMA Netw. Open 3, e2015665 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Huttunen, H. et al. Central precocious puberty in boys: secular trend and clinical features. Eur. J. Endocrinol. 190, 211–219 (2024).

Article  PubMed  Google Scholar 

Chiaffarino, F. et al. Prevalence of polycystic ovary syndrome in European countries and USA: a systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 279, 159–170 (2022).

Article  PubMed  Google Scholar 

Li, M. et al. The global prevalence of premature ovarian insufficiency: a systematic review and meta-analysis. Climacteric 26, 95–102 (2023).

Article  CAS  PubMed  Google Scholar 

Gliozheni, O. et al. ART in Europe, 2016: results generated from European registries by ESHRE. Hum. Reprod. Open. 2020, hoaa032 (2020).

Article  Google Scholar 

Bhattacharjee, N. V. et al. Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the global burden of disease study 2021. Lancet 403, 2057–2099 (2024).

Article  Google Scholar 

Aitken, R. J. The changing tide of human fertility. Hum. Reprod. 37, 629–638 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Land, K. L., Miller, F. G., Fugate, A. C. & Hannon, P. R. The effects of endocrine‐disrupting chemicals on ovarian‐ and ovulation‐related fertility outcomes. Mol. Reprod. Dev. 89, 608–631 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conforti, A. et al. Unravelling the link between phthalate exposure and endometriosis in humans: a systematic review and meta-analysis of the literature. J. Assist. Reprod. Genet. 38, 2543–2557 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kim, J. H. & Kim, S. H. Exposure to phthalate esters and the risk of endometriosis. Dev. Reprod. 24, 71–78 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Freire, C. et al. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int. J. Hyg. Environ. Health 261, 114418 (2024).

Article  CAS  PubMed  Google Scholar 

Averina, M. et al. Early menarche and other endocrine disrupting effects of per- and polyfluoroalkyl substances (PFAS) in adolescents from Northern Norway. The Fit Futures study. Environ. Res. 242, 117703 (2024).

Article  CAS  PubMed  Google Scholar 

Pinney, S. M. et al. Exposure to perfluoroalkyl substances and associations with pubertal onset and serum reproductive hormones in a longitudinal study of young girls in greater Cincinnati and the San Francisco bay area. Environ. Health Perspect. 131, 97009 (2023).

Article  CAS  PubMed  Google Scholar 

Bellavia, A. et al. Association between chemical mixtures and female fertility in women undergoing assisted reproduction in Sweden and Estonia. Environ. Res. 216, 114447 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

World Health Organization. Global assessment on the state of the science of endocrine disruptors. WHO https://www.who.int/publications/i/item/WHO-PSC-EDC-02.2 (2002).

Gore, A. C. et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 36, E1–E150 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endocrine disruptor list. The Danish Environmental Protection Agency https://edlists.org/ (2024).

Lecante, L. L. et al. Acetaminophen (APAP, paracetamol) interferes with the first trimester human fetal ovary development in an ex vivo model. J. Clin. Endocrinol. Metab. 107, 1647–1661 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Lin, C.-J. & Li, L.-A. Estrogenicity of major organic chemicals in cigarette sidestream smoke particulate matter. Atmosphere 14, 647 (2023).

Article  CAS  Google Scholar 

Johansson, H. K. L., Svingen, T., Fowler, P. A., Vinggaard, A. M. & Boberg, J. Environmental influences on ovarian dysgenesis — developmental windows sensitive to chemical exposures. Nat. Rev. Endocrinol. 13, 400–414 (2017).

Article  PubMed  Google Scholar 

van Duursen, M. B. M. et al. Safeguarding female reproductive health against endocrine disrupting chemicals — the FREIA project. Int. J. Mol. Sci. 21, 3215 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Vinnars, M.-T., Bixo, M. & Damdimopoulou, P. Pregnancy-related maternal physiological adaptations and fetal chemical exposure. Mol. Cell Endocrinol. 578, 112064 (2023).

Article  CAS  PubMed  Google Scholar 

Wu, Y. et al. Maternal exposure to endocrine disrupting chemicals (EDCs) and preterm birth: a systematic review, meta-analysis, and meta-regression analysis. Environ. Pollut. 292, 118264 (2022).

Article  CAS  PubMed  Google Scholar 

Kek, T., Geršak, K. & Virant-Klun, I. Exposure to endocrine disrupting chemicals (bisphenols, parabens, and triclosan) and their associations with preterm birth in humans. Reprod. Toxicol. 125, 108580 (2024).

Article  CAS  PubMed  Google Scholar 

Poole, E. M. & Boland, M. R. A national study of the associations between hormonal modulators in hydraulic fracturing fluid chemicals and birth outcomes in the United States of America: a county-level analysis. Environ. Health Perspect. 132, 107001 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Haydardedeoglu, B. & Zeyneloglu, H. B. The impact of endometriosis on fertility. Womens Health 11, 619–623 (2015).

CAS  Google Scholar 

Chandrakanth, A., Firdous, S., Vasantharekha, R., Santosh, W. & Seetharaman, B. Exploring the effects of endocrine-disrupting chemicals and miRNA expression in the pathogenesis of endometriosis by unveiling the pathways: a systematic review. Reprod. Sci. 31, 932–941 (2024).

Article  CAS  PubMed  Google Scholar 

Kahn, L. G., Philippat, C., Nakayama, S. F., Slama, R. & Trasande, L. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol. 8, 703–718 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma, P., Tseng, H.-H., Lee, J.-Y. L., Tsai, E.-M. & Suen, J.-L. A prominent environmental endocrine disruptor, 4-nonylphenol, promotes endometriosis development via plasmacytoid dendritic cells. Mol. Hum. Reprod. 26, 601–614 (2020).

Article  CAS  PubMed  Google Scholar 

Wallace, W. H. B. & Kelsey, T. W. Human ovarian reserve from conception to the menopause. PLoS ONE 5, e8772 (2010).

Article 

Comments (0)

No login
gif