Traumatic Brain Injury and Gut Microbiome: The Role of the Gut-Brain Axis in Neurodegenerative Processes

Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987–1048. https://doi.org/10.1016/S1474-4422(17)30371-X.

Article  PubMed  Google Scholar 

The Scope and Burden of Traumatic Brain Injury. In: Donald Berwick KB, and Chanel Matney,, editor. National Academies of Sciences, Engineering, and Medicine 2022. Traumatic Brain Injury: A Roadmap for Accelerating Progress. Washington, DC: The National Academies Press; 2022.

Kunapaisal T, Vavilala MS, Moore A, Theard MA, Lele AV. Critical Care Experience With Clinical Cerebral Autoregulation Testing in Adults With Traumatic Brain Injury. Cureus. 2023;15(8):e43451. https://doi.org/10.7759/cureus.43451.

Article  PubMed  PubMed Central  Google Scholar 

van Dijck J, Dijkman MD, Ophuis RH, de Ruiter GCW, Peul WC, Polinder S. In-hospital costs after severe traumatic brain injury: A systematic review and quality assessment. PLoS One. 2019;14(5):e0216743. https://doi.org/10.1371/journal.pone.0216743.

Article  PubMed  PubMed Central  Google Scholar 

Maas AIR, Menon DK, Manley GT, Abrams M, Akerlund C, Andelic N, et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022;21(11):1004–60. https://doi.org/10.1016/S1474-4422(22)00309-X.

Article  PubMed  PubMed Central  Google Scholar 

Divani AA, Phan JA, Salazar P, SantaCruz KS, Bachour O, Mahmoudi J, et al. Changes in [(18)F]Fluorodeoxyglucose Activities in a Shockwave-Induced Traumatic Brain Injury Model Using Lithotripsy. J Neurotrauma. 2017. https://doi.org/10.1089/neu.2017.5208.

Article  PubMed  Google Scholar 

Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne). 2023;14:1130689. https://doi.org/10.3389/fendo.2023.1130689.

Article  PubMed  Google Scholar 

Chiu LS, Anderton RS. The role of the microbiota-gut-brain axis in long-term neurodegenerative processes following traumatic brain injury. Eur J Neurosci. 2023;57(2):400–18. https://doi.org/10.1111/ejn.15892.

Article  CAS  PubMed  Google Scholar 

Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csipo T, Tarantini S, et al. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients. 2024;16(6):789. https://doi.org/10.3390/nu16060789.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, et al. The gut microbiota-brain axis in neurological disorder. Front Neurosci. 2023;17:1225875. https://doi.org/10.3389/fnins.2023.1225875.

Article  PubMed  PubMed Central  Google Scholar 

Hu X, Jin H, Yuan S, Ye T, Chen Z, Kong Y et al. Fecal microbiota transplantation inhibited neuroinflammation of traumatic brain injury in mice via regulating the gut–brain axis. Front Cell Infect Microbiol. 2023;13. https://doi.org/10.3389/fcimb.2023.1254610.

Du D, Tang W, Zhou C, Sun X, Wei Z, Zhong J, et al. Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury. Oxid Med Cell Longev. 2021;2021:5816837. https://doi.org/10.1155/2021/5816837.

Article  CAS  PubMed Central  Google Scholar 

Selassie AW, Wilson DA, Pickelsimer EE, Voronca DC, Williams NR, Edwards JC. Incidence of sport-related traumatic brain injury and risk factors of severity: a population-based epidemiologic study. Ann Epidemiol. 2013;23(12):750–6. https://doi.org/10.1016/j.annepidem.2013.07.022.

Article  PubMed  PubMed Central  Google Scholar 

Burmeister DM, Johnson TR, Lai Z, Scroggins SR, DeRosa M, Jonas RB, et al. The gut microbiome distinguishes mortality in trauma patients upon admission to the emergency department. J Trauma Acute Care Surg. 2020;88(5):579–87. https://doi.org/10.1097/TA.0000000000002612.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warwick J, Slavova S, Bush J, Costich J. Validation of ICD-10-CM surveillance codes for traumatic brain injury inpatient hospitalizations. Brain Inj. 2020;34(13–14):1763–70. https://doi.org/10.1080/02699052.2020.1849801.

Article  PubMed  PubMed Central  Google Scholar 

Faridar A, Bershad EM, Emiru T, Iaizzo PA, Suarez JI, Divani AA. Therapeutic hypothermia in stroke and traumatic brain injury. Front Neurol. 2011;2:80. https://doi.org/10.3389/fneur.2011.00080.

Article  PubMed  PubMed Central  Google Scholar 

Divani AA, Murphy AJ, Meints J, Sadeghi-Bazargani H, Nordberg J, Monga M, et al. A Novel Preclinical Model of Moderate Primary Blast-Induced Traumatic Brain Injury. J Neurotrauma. 2015;32(14):1109–16. https://doi.org/10.1089/neu.2014.3686.

Article  PubMed  Google Scholar 

Leung LY, Wei G, Shear DA, Tortella FC. The acute effects of hemorrhagic shock on cerebral blood flow, brain tissue oxygen tension, and spreading depolarization following penetrating ballistic-like brain injury. J Neurotrauma. 2013;30(14):1288–98. https://doi.org/10.1089/neu.2012.2715.

Article  PubMed  Google Scholar 

Malec JF, Brown AW, Leibson CL, Flaada JT, Mandrekar JN, Diehl NN, et al. The mayo classification system for traumatic brain injury severity. J Neurotrauma. 2007;24(9):1417–24. https://doi.org/10.1089/neu.2006.0245.

Article  PubMed  Google Scholar 

Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Investig. 2021;131(12). https://doi.org/10.1172/JCI143777.

Divani AA, Salazar P, Ikram HA, Taylor E, Wilson CM, Yang Y, et al. Non-Invasive Vagus Nerve Stimulation Improves Brain Lesion Volume and Neurobehavioral Outcomes in a Rat Model of Traumatic Brain Injury. J Neurotrauma. 2023. https://doi.org/10.1089/neu.2022.0153.

Article  PubMed  PubMed Central  Google Scholar 

Maragakis NJ, Rothstein JD. Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. 2006;2(12):679–89. https://doi.org/10.1038/ncpneuro0355.

Article  CAS  PubMed  Google Scholar 

Simon DW, McGeachy MJ, Bayir H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–91. https://doi.org/10.1038/nrneurol.2017.13.

Article  PubMed  PubMed Central  Google Scholar 

Sulhan S, Lyon KA, Shapiro LA, Huang JH. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets. J Neurosci Res. 2020;98(1):19–28. https://doi.org/10.1002/jnr.24331.

Article  CAS  PubMed  Google Scholar 

Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013;698(1–3):6–18. https://doi.org/10.1016/j.ejphar.2012.10.032.

Article  CAS  PubMed  Google Scholar 

Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357(Pt 3):593–615. https://doi.org/10.1042/0264-6021:3570593.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bortolotti P, Faure E, Kipnis E. Inflammasomes in Tissue Damages and Immune Disorders After Trauma. Front Immunol. 2018;9:1900. https://doi.org/10.3389/fimmu.2018.01900.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vourc’h M, Roquilly A, Asehnoune K. Trauma-Induced Damage-Associated Molecular Patterns-Mediated Remote Organ Injury and Immunosuppression in the Acutely Ill Patient. Front Immunol. 2018;9:1330. https://doi.org/10.3389/fimmu.2018.01330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg Off Publ Eur Trauma Soc. 2020;46(4):751–75. https://doi.org/10.1007/s00068-019-01235-w.

Article  Google Scholar 

Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med. 2008;29(4):617–25, viii. https://doi.org/10.1016/j.ccm.2008.06.010.

Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49(5):e338. https://doi.org/10.1038/emm.2017.20.

Article  CAS 

Comments (0)

No login
gif