Fouad Y, Alboraie M, Shiha G. Epidemiology and diagnosis of metabolic dysfunction-associated fatty liver disease. Hepatol Int. 2024;18:827–33. https://doi.org/10.1007/s12072-024-10704-3
Pais R, Barritt AS, Calmus Y, Scatton O, Runge T, Lebray P, et al. NAFLD and liver transplantation : Current burden and expected challenges. J Hepatol. 2016;65:1245–57. https://doi.org/10.1016/j.jhep.2016.07.033.
Article PubMed PubMed Central Google Scholar
Polyzos SA, Mantzoros CS. Nonalcoholic fatty future disease. Metabolism. 2015;65:1007–16. https://doi.org/10.1016/j.metabol.2015.12.009.
Article CAS PubMed Google Scholar
Parola M, Pinzani M. Molecular Aspects of Medicine Liver fibrosis in NAFLD / NASH : from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med. 2024;95: 101231. https://doi.org/10.1016/j.mam.2023.101231.
Article CAS PubMed Google Scholar
Makri E, Goulas A, Polyzos SA. Epidemiology, Pathogenesis, Diagnosis and Emerging Treatment of Nonalcoholic Fatty Liver Disease. Arch Med Res. 2021;52:25–37. https://doi.org/10.1016/j.arcmed.2020.11.010.
Article CAS PubMed Google Scholar
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease : An international expert consensus statement. J Hepatol. 2020;73:202–9. https://doi.org/10.1016/j.jhep.2020.03.039.
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79:1542–56. https://doi.org/10.1016/j.jhep.2023.06.003.
Article CAS PubMed Google Scholar
Raptis DD, Mantzoros CS, Polyzos SA. Fibroblast Growth Factor-21 as a Potential Therapeutic Target of Nonalcoholic Fatty Liver Disease. Ther Clin Risk Manag. 2023;19:77–96. https://doi.org/10.2147/TCRM.S352008.
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P. The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol. 2022;13:1089214. https://doi.org/10.3389/fphar.2022.1089214.
Article CAS PubMed PubMed Central Google Scholar
Lin X, Liu YB, Hu H. Metabolic role of fibroblast growth factor 21 in liver, adipose and nervous system tissues. Biomed reports. 2017;6:495–502. https://doi.org/10.3892/br.2017.890.
Staiger H, Keuper M, Berti L, de Angelis MH, Häring HU. Fibroblast Growth Factor 21-Metabolic Role in Mice and Men. Endocr Rev. 2017;38:468–88. https://doi.org/10.1210/er.2017-00016.
Brooke BS, Schwartz TA, Pawlik TM. MOOSE Reporting Guidelines for Meta-analyses of Observational Studies. JAMA Surg. 2021;156:787–8. https://doi.org/10.1001/jamasurg.2021.0522.
Abozaid YJ, Ayada I, Van Kleef LA, Vallerga CL, Pan Q, Brouwer WP, et al. Plasma proteomic signature of fatty liver disease: The Rotterdam Study. Hepatology. 2023;78:284–94. https://doi.org/10.1097/HEP.0000000000000300.
Ajaz S, McPhail MJ, Gnudi L, Trovato FM, Mujib S, Napoli S, et al. Mitochondrial dysfunction as a mechanistic biomarker in patients with non-alcoholic fatty liver disease (NAFLD). Mitochondrion. 2021;57:119–30. https://doi.org/10.1016/j.mito.2020.12.010.
Article CAS PubMed Google Scholar
Franck M, John K, Al Aoua S, Rau M, Geier A, Schattenberg JM, et al. Hepatokine-based identification of fibrotic NASH and improved risk stratification in a multicentre cohort of NAFLD patients. Liver Int. 2023;43:2668–79. https://doi.org/10.1111/liv.15686.
Article CAS PubMed Google Scholar
Gallego-Durán R, Ampuero J, Maya-Miles D, Pastor-Ramírez H, Montero-Vallejo R, Rivera-Esteban J, et al. Fibroblast growth factor 21 is a hepatokine involved in MASLD progression. United Eur Gastroenterol J. 2024;1–13. https://doi.org/10.1002/ueg2.12534.
Giannouli A, Stefanaki C, Kouskoutis C, Konidari M, Mani I, Konidari K, et al. Hepatokine Profile in Adolescents with Polycystic Ovary Syndrome: A Case-Control Study. J Clin Med. 2023;12:5744. https://doi.org/10.3390/jcm12175744.
Article CAS PubMed PubMed Central Google Scholar
Goralska J, Razny U, Gruca A, Zdzienicka A, Micek A, Dembinska-Kiec A, et al. Plasma Cytokeratin-18 Fragment Level Reflects the Metabolic Phenotype in Obesity. Biomolecules. 2023;12:476. https://doi.org/10.3390/biom13040675.
Hua MC, Huang JL, Hu CC, Yao TC, Lai MW. Including Fibroblast Growth Factor-21 in Combined Biomarker Panels Improves Predictions of Liver Steatosis Severity in Children. Front Pediatr. 2019;7:420. https://doi.org/10.3389/fped.2019.00420.
Article PubMed PubMed Central Google Scholar
Ji F, Liu Y, Hao JG, Wang LP, Dai MJ, Shen GF, et al. KLB gene polymorphism is associated with obesity and non-alcoholic fatty liver disease in the Han Chinese. Aging (Albany NY). 2019;11:7847–58. https://doi.org/10.18632/aging.102293.
Jiang S, Zhang R, Li H, Fang Q, Jiang F, Hou X, et al. The single nucleotide polymorphism rs499765 is associated with fibroblast growth factor 21 and nonalcoholic fatty liver disease in a Chinese population with normal glucose tolerance. J Nutrigenet Nutrigenomics. 2014;7:121–9. https://doi.org/10.1159/000367943.
Article CAS PubMed Google Scholar
Ko HJ, Woo S, Han J, Kim YM, Lim HJ, Kim MJ, et al. Which obesity index is the most useful marker for predicting hepatic steatosis in children and adolescents with obesity? A cross-sectional study using quantitative magnetic resonance imaging. Obes Res Clin Pract. 2023;17:335–42. https://doi.org/10.1016/j.orcp.2023.05.013.
Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, et al. Adaptation of Hepatic Mitochondrial Function in Humans with Non-Alcoholic Fatty Liver Is Lost in Steatohepatitis. Cell Metab. 2015;21:739–46. https://doi.org/10.1016/j.cmet.2015.04.004.
Article CAS PubMed Google Scholar
Koot BGP, van der Baan-Slootweg OH, Bohte AE, Nederveen AJ, van Werven JR, Tamminga-Smeulders CLJ, et al. Accuracy of prediction scores and novel biomarkers for predicting nonalcoholic fatty liver disease in obese children. Obesity (Silver Spring). 2013;21:583–90. https://doi.org/10.1002/oby.20173.
Article CAS PubMed Google Scholar
Alisi A, Ceccarelli S, Panera N, Prono F, Petrini S, De Stefanis C, et al. Association between Serum Atypical Fibroblast Growth Factors 21 and 19 and Pediatric Nonalcoholic Fatty Liver Disease. PLoS ONE. 2013;8: e67160. https://doi.org/10.1371/journal.pone.0067160.
Article CAS PubMed PubMed Central Google Scholar
Li H, Dong K, Fang Q, Hou X, Zhou M, Bao Y, et al. High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China. J Hepatol. 2013;58:557–63. https://doi.org/10.1016/j.jhep.2012.10.029.
Article CAS PubMed Google Scholar
Li X, Fan X, Ren F, Zhang Y, Shen C, Ren G, et al. Serum FGF21 levels are increased in newly diagnosed type 2 diabetes with nonalcoholic fatty liver disease and associated with hsCRP levels independently. Diabetes Res Clin Pract. 2011;93:10–6. https://doi.org/10.1016/j.diabres.2011.02.034.
Article CAS PubMed Google Scholar
Li X, Zheng K, Liu L, Zhang T, Gu W, Hou X, et al. Relationship of postprandial fibroblast growth factor 21 with lipids, inflammation and metabolic dysfunction-associated fatty liver disease during oral fat tolerance test. Front Endocrinol (Lausanne). 2024;15:1–11. https://doi.org/10.3389/fendo.2024.1343853.
Lin D, Sun Q, Liu Z, Pan J, Zhu J, Wang S, et al. Gut microbiota and bile acids partially mediate the improvement of fibroblast growth factor 21 on methionine-choline-deficient diet-induced non-alcoholic fatty liver disease mice. Free Radic Biol Med. 2023;195:199–218. https://doi.org/10.1016/j.freeradbiomed.2022.12.087.
Article CAS PubMed Google Scholar
Lin H, Mercer KE, Ou X, Mansfield K, Buchmann R, Børsheim E, et al. Circulating microRNAs Are Associated With Metabolic Markers in Adolescents With Hepatosteatosis. Front Endocrinol (Lausanne). 2022;13: 856973.
Comments (0)