J. X. Sheng, D. K. Weisenstein, B. P. Luo, E. Rozanov, A. Stenke, J. Anet, and T. Peter, “Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation,” J. Geophys. Res.: Atmos, 120 (1), 256–276 (2015). https://doi.org/10.1002/2014JD021985
J. G. Porter, W. De Bruyn, and E. S. Saltzman, “Eddy flux measurements of sulfur dioxide deposition to the sea surface,” Atmos. Chem. Phys. 18, 15 291–15 305 (2018). https://doi.org/10.5194/acp-18-15291-2018
M. Gordon, D. Blanchard, T. Jiang, P. A. Makar, R. M. Staebler, J. Aherne, and X. Zhang, “High sulfur dioxide deposition velocities measured with the flux-gradient technique in a boreal forest in the Alberta oil sands region,” Atmos. Chem. Phys. 23 (13), 7241–7255 (2023). https://doi.org/10.5194/acp-23-7241-2023
M. Liu, L. Hoffmann, S. Griessbach, Z. Cai, Y. Heng, and X. Wu, “Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: A case study with MPTRAC V2.4,” Geosci. Model Develop. 16 (17), 5197–5217 (2023). https://doi.org/10.5194/gmd-16-5197-2023
A. S. Zayakhanov, G. S. Zhamsueva, V. V. Tsydopov, and T. S. Bal’zhanov, “Influence of dynamic processes on variations of ozone and other trace gases near the coastal zone of Lake Baikal,” Opt. Atmos. Okeana 28 (6), 505–511 (2015). https://doi.org/10.15372/AOO20150602
V. L. Makukhin, V. A. Obolkin, V. L. Potemkin, I. V. Latysheva, and T. V. Khodzher, “Estimation of minor gaseous admixtures spatial distribution over the Lake Baikal Water area in summer period by the use of field measurements and mathematical simulation,” Izv. Irkut. Gos. Univ. Ser. Nauki Zemle 18, 69–80 (2016).
I. V. Latysheva, A. S. Ivanova, V. L. Makukhin, and V. I. Mordvinov, “Influence of meteorological conditions on spreading and transformation of aerosol and gas components in the Lake Baikal region,” Atmos. Ocean. Opt. 17 (4), 283–285 (2004).
H. F. Duarte, M. Y. Leclerc, G. Zhang, D. Durden, R. Kurzeja, M. Parker, and D. Werth, “Impact of nocturnal low-level jets on near-surface turbulence kinetic energy,” Bound.-Lay. Meteorol. 156 (3), 349–370 (2015). https://doi.org/10.1007/s10546-015-0030-z
W. Wei, H. Zhang, X. Cai, Y. Song, Y. Bian, K. Xiao, and H. Zhang, “Influence of intermittent turbulence on air pollution and its dispersion in winter 2016/2017 over Beijing, China,” J. Meteorol. Res. 34 (1), 176–188 (2020). https://doi.org/10.1007/s13351-020-9128-4
V. A. Banakh, A. A. Sukharev, A. V. Falits, E. V. Gordeev, and I. V. Zaloznaya, “Estimation of the Richardson number in the atmospheric boundary layer using data from temperature radiometer and Doppler lidar,” Proc. SPIE—Int. Soc. Opt. Eng. 11560, 1575–1580 (2020). https://doi.org/10.1117/12.2575597
V. A. Obolkin, Yu. V. Shamanskii, T. V. Khodzher, and A. V. Falits, “Mesoscale processes of atmospheric pollutants transfer in the South Baikal region,” Okeanolog. Issled. 47 (3), 104–113 (2019). https://doi.org/10.29006/1564-2291.JOR-2019.47(3).9
V. A. Banakh and I. N. Smalikho, “Lidar studies of wind turbulence in the stable atmospheric boundary layer,” Remote Sens. 10 (8), 1219–2030 (2018). https://doi.org/10.3390/rs10081219
Yu. S. Balin, A. D. Ershov, and I. E. Penner, “Shipborne lidar investigations of aerosol fields in the atmosphere over Lake Baikal. Part 1. Longitudinal sections,” Atmos. Ocean. Opt. 16 (5–6), 402–410 (2003).
R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modelling system for trajectories,” Australian Meteorol. Mag. 47 (4), 295–308 (1998).
V. A. Banakh and I. N. Smalikho, “Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal,” Atmos. Meas. Tech. 9 (10), 5239–5248 (2016). https://doi.org/10.5194/amt-9-5239-2016
G. P. Kokhanenko, Y. S. Balin, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Ocean. Opt. 24 (5), 478–486 (2011). https://doi.org/10.1134/S1024856011050083
A. S. Zayakhanov, G. S. Zhamsueva, V. V. Tsydypov, T. S. Balzhanov, Y. S. Balin, I. E. Penner, and S. V. Nasonov, “Specific features of transport and transformation of atmospheric aerosol and gas admixtures in the coastal zone of Lake Baikal,” Atmos. Ocean. Opt. 32 (2), 158–164 (2019).
S. Nasonov, Y. Balin, M. Klemasheva, G. Kokhanenko, M. Novoselov, and I. Penner, “Study of atmospheric aerosol in the Baikal mountain basin with shipborne and ground-based lidars,” Remote Sens. 15 (15), 3816 (2023). https://doi.org/10.3390/rs15153816
S. Nasonov, Y. Balin, M. Klemasheva, G. Kokhanenko, M. Novoselov, and I. Penner, “Peculiarities of the vertical structure of atmospheric aerosol fields in the basin of Lake Baikal according to lidar observations,” Atmosphere 14 (5), 837 (2023). https://doi.org/10.3390/atmos14050837
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Munoz-Sabater, and J. N. Thepaut, “The ERA5 global reanalysis,” Q. J. R. Meteorol. Soc. 146 (730), 1999–2049 (2020). https://doi.org/10.1002/qj.3803
L. Hoffmann, G. Gunther, D. Li, O. Stein, X. Wu, S. Griessbach, and J. S. Wright, “From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations,” Atmos. Chem. Phys. 19 (5), 3097–3124 (2019). https://doi.org/10.5194/acp-19-3097-2019
A. Yu. Shikhovtsev, “A method of determining optical turbulence characteristics by the line of sight of an astronomical telescope,” Atmos. Ocean. Opt. 35 (3), 303–309 (2022).
V. Banakh and I. Smalikho, “Lidar study of wind turbulence, low level jet streams, and atmospheric internal waves in the boundary layer of atmosphere,” EPJ Web Conf. 176 (06005) (2018). https://doi.org/10.1051/epjconf/201817606005
V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Wind-temperature regime and wind turbulence in a stable boundary layer of the atmosphere: Case study,” Remote Sens. 12 (6), 955 (2020). https://doi.org/10.3390/rs12060955
M. Yu. Shikhovtsev, V. A. Obolkin, T. V. Khodzher, and Ye. V. Molozhnikova, “Variability of the ground concentration of particulate matter PM1-PM10 in the air basin of the Southern Baikal region,” Atmos. Ocean. Opt. 36 (6), 655–662 (2023).
A. Y. Shikhovtsev, “Reference optical turbulence characteristics at the Large Solar Vacuum Telescope site,” Publ. Astron. Soc. Japan, 31 (2024). https://doi.org/10.1093/pasj/psae031
B. Yang, D. Finn, J. Rich, Z. Gao, and H. Liu, “Effects of low-level jets on near surface turbulence and wind direction changes in the nocturnal boundary layer,” J. Geophys. Res.: Atmos. 128 (11), JD037657 (2023). https://doi.org/10.1029/2022JD037657
H. Liu, M. He, B. Wang, and Q. Zhang, “Advances in low-level jet research and future prospects,” J. Meteorol. Res. 28 (1), 57–75 (2014).
R. M. Banta, Y. L. Pichugina, and R. K. Newsom, “Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer,” J. Atmos. Sci. 60 (20), 2549–2555 (2003). https://doi.org/10.1175/1520-0469(2003)060<2549:R-BLJPA>2.0.CO;2
A. Sogachev and M. Y. Leclerc, “On concentration footprints for a tall tower in the presence of a nocturnal low-level jet,” Agric. Forest Meteorol. 151 (6), 755–764 (2011). https://doi.org/10.1016/j.agrformet.2010.10.004
Comments (0)