M. O. Andreae, C. D. Jones, and P. M. Cox, “Strong present-day cooling implies a hot future,” Nature 435 (7046), 1187–1190 (2005). https://doi.org/10.1038/nature03671
Y. Wang, Q. Zhang, J. Jiang, W. Zhou, B. Wang, K. He, F. Duan, Q. Zhang, S. Philip, and Y. Xie, “Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models,” J. Geophys. Res.: Atmos. 119 (17), 10425–10440 (2014). https://doi.org/10.1002/2013JD021426
M. Liu, Y. Song, T. Zhou, Zh. Xu, C. Yan, M. Zheng, Zh. Wu, M. Hu, Y. Wu, and T. Zhu, “Fine particle PH during severe haze episodes in Northern China,” Geophys. Rev. Lett. 44 (10), 5213–5221 (2017). https://doi.org/10.1002/2017GL073210
T. Liu, S. L. Clegg, and J. P. D. Abbatt, “Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles,” Proc. Natl. Acad. Sci. U.S.A. 117 (3), 1354–1359 (2020). https://doi.org/10.1073/pnas.1916401117
P. Liu, C. Ye, Ch, Xue, Ch. Zhang, Yu. Mu, and X. Sun, “Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry,” Atmos. Chem. Phys. 20 (7), 4153–4165 (2020). https://doi.org/10.5194/acp-20-4153-2020
Y. Wang, F. Zhang, Z. Li, H. Tan, H. Xu, J. Ren, J. Zhao, W. Du, and Y. Sun, “Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing,” Atmos. Chem. Phys. 17 (8), 5239–5251 (2017). https://doi.org/10.5194/acp-17-5239-2017
A. A. Vinogradova, D. P. Gubanova, M. A. Iordanskii, and A. I. Skorokhod, “The influence of meteorological conditions and long-range air mass transport on the winter near-surface aerosol composition in Moscow,” Atmos. Ocean. Opt. 35 (6), 758–768 (2022).
E. P. Yausheva, V. A. Gladkikh, A. P. Kamardin, and V. P. Shmargunov, “Extreme events of aerosol pollution of the atmosphere in winter in Tomsk Akademgorodok,” Atmos. Ocean. Opt. 36 (S1), S65–S73 (2023).
G. J. Zheng, F. K. Duan, H. Su, Y. L. Ma, Y. Cheng, B. Zheng, T. Huang, T. Kimoto, D. Chang, U. Poshl, Y. F. Cheng, and K. B. He, “Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions,” Atmos. Chem. Phys. 15 (6), 2969–2983 (2015).https://doi.org/10.5194/acp-15-2969-2015
H. Herrmann, B. Ervens, H.-W. Jacobi, R. Wolke, P. Nowacki, and R. J. Zellner, “CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry,” J. Atmos. Chem. 36 (3), 231–284 (2000). https://doi.org/10.1023/A:1006318622743
G. H. Wang, R. Y. Zhang, M. E. Gomes, Y. Song, L. Zhou, J. Cao, J. Hu, G. Tang, Zh. Chen, Z. Li, Z. Hu, C. Peng, C. Lian, Y. Chen, Y. Pan, Y. Zhang, Y. Sun, W. Li, T. Zhu, H. Tian, and M. Ge, “Persistent sulfate formation from London fog to Chinese haze,” Proc. Natl. Acad. Sci. U.S.A. 113 (48), 13 630–13 635 (2016). https://doi.org/10.1002/2013JD021426
T. Ibusuki and K. Takeuchi, “Sulfur-dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous-solutions at environmental reaction condition,” Atmos. Environ. 21 (7), 1555–1560 (1987). https://doi.org/10.1016/0004-6981(87)90317-9
A. N. Yermakov, A. E. Aloyan, V. O. Arutyunyan, and G. B. Pronchev, “A new source of sulfates in the atmosphere,” Atmos. Ocean. Opt. 37 (2), 166–173 (2024).
G. B. Pronchev and A. N. Yermakov, “On the mechanism of nitrate formation in atmospheric haze particles,” Russ. J. Phys. Chem. B 18 (5), 1422–1429 (2024). https://doi.org/10.1134/S1990793124701148
R. V. Grieken, Optimization and Environmental Application of TW-EPMA for Single Particle Analysis (University of Antwerp, Antwerpen, 2005).
C. Fountoukis and A. Nenes, “ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–\(}_^\)–Na+–\(}_^}\)–NO3–Cl−–H2O aerosols,” Atmos. Chem. Phys. 7 (17), 4639–4659 (2007). https://doi.org/10.5194/acp-7-4639-200710.5194/acp-7-4639-2007
A. N. Yermakov, A. E. Aloyan, and V. O. Arutyunyan, “Acidity of aerosol particles in the rural atmosphere,” Russ. Meteorol. Hydrol. 46 (11), 762–767 (2021). https://doi.org/10.3103/S1068373921110054
E. Swietlicki, H. C. Hansson, K. H.-C. Hameri, B. Sveningsson, A. Massling, G. McFiggans, P. H. McMurry, T. Petaj, P. Tunved, M. Gysel, D. Topping, E. Weingartner, U. Baltensperger, J. Rissler, A. Wiedensohler, and M. Kulmala, “Hydroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review,” Tellus B: Chem. Phys. Meteorol. 60 (3), 432–469 (2008). https://doi.org/10.1111/j.1600-0889.2008.00350.x
M. D. Petters and S. M. Kreidenweis, “A single parameter representation of hygroscopic growth and cloud condensation nucleus activity,” Atmos. Chem. Phys. 7 (8), 1961–1971 (2007). https://doi.org/10.5194/acp-7-1961-2007
P. He, B. Alexander, L. Geng, X. Chi, C. Shidong, H. Fan, H. Zhan, H. Kang, G. Zheng, Y. Cheng, H. Su, C. Liu, and Zh. Xie, “Isotopic constraints on heterogeneous sulfate production in Beijing haze,” Atmos. Chem. Phys. 18 (8), 5515–5528 (2018). https://doi.org/10.5194/acp-18-5515-2018
L. R. Martin and M. W. Hill, “The effect of ionic strength on the manganese catalyzed oxidation of sulfur(IV),” Atmos. Environ. 21 (10), 2267–2270 (1987). https://doi.org/10.1016/0004-6981(87)90361-1
R. B. Baranova, L. T. Bugaenko, I. N. Ivanina, N. N. Kostenko, and G. A. Starodubtsev, “Mechanism and main regularities of radiation-catalytic oxidation of sulfur dioxide in sulfuric acid solution,” Khim. Vys. Energ. 16 (3), 234–239 (1982).
B. Alexander, R. J. Park, D. J. Jacob, and S. Gong, “Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget,” J. Geophys. Res.: Atmos. 114 (D2) (2009). https://doi.org/10.1029/2008JD010486
J. R. Mc-Cabe, J. Savarino, B. Alexander, S. Gong, M. H. Thiemens, “Isotopic constraints on non-photochemical sulfate production in the Arctic winter,” Geophys. Rev. Lett. 33 (5), L05810 (2006). https://doi.org/10.1029/2005GL025164
Ch. Brandt and R. van Eldik, “Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms,” Chem. Rev. 95 (1), 119–190 (1995). https://doi.org/10.1021/cr00033a006
H. Wang, K. Lu, X. Chen, Q. Zhu, Q. Chen, S. Guo, M. Jiang, X. Li, D. Shang, Zh. Tan, Y. Wu, Z. Wu, Q. Zou, Y. Zheng, L. Zeng, T. Zhu, M. Hu, and Y. Zhang, “High N2O5 concentrations observed in urban Beijing: Implications of a large nitrate formation,” Environ. Sci. Technol. Lett. 4 (10), 416–420 (2017). https://doi.org/10.1021/acs.estlett.7b00341
H. Wang, The Chemistry of Nitrate Radical (NO 3) and Denitrogen Pentoxide (N 2O 5) in Beijing (Springer, Singapore, 202)1
Y. Sun, Q. Jiang, Z. Wang, P. Fu, J. Li, T. Yang, and Y. Yin, “Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013,” J. Geophys. Res. 119 (7), 4380–4398 (2014). https://doi.org/10.1002/2014JD021641
S. P. Sander, B. J. Finlayson-Pitts, R. R. Friedl, D. M. Golden, R. Huie, H. Keller-Rudel, S. E. Kolb, M. J. Kurylo, M. J. Molina, G. K. Moortgat, V. L. Orkin, A. R. Ravishankara, and P. H. Wine, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation No. 15 (Jet Propulsion Laboratory, Pasadena, CA, 2006).
Comments (0)