The Nature of Hygroscopicity of Aerosol Haze Particles over Beijing

M. O. Andreae, C. D. Jones, and P. M. Cox, “Strong present-day cooling implies a hot future,” Nature 435 (7046), 1187–1190 (2005). https://doi.org/10.1038/nature03671

Article  ADS  Google Scholar 

Y. Wang, Q. Zhang, J. Jiang, W. Zhou, B. Wang, K. He, F. Duan, Q. Zhang, S. Philip, and Y. Xie, “Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models,” J. Geophys. Res.: Atmos. 119 (17), 10425–10440 (2014). https://doi.org/10.1002/2013JD021426

Article  ADS  Google Scholar 

M. Liu, Y. Song, T. Zhou, Zh. Xu, C. Yan, M. Zheng, Zh. Wu, M. Hu, Y. Wu, and T. Zhu, “Fine particle PH during severe haze episodes in Northern China,” Geophys. Rev. Lett. 44 (10), 5213–5221 (2017). https://doi.org/10.1002/2017GL073210

Article  ADS  Google Scholar 

T. Liu, S. L. Clegg, and J. P. D. Abbatt, “Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles,” Proc. Natl. Acad. Sci. U.S.A. 117 (3), 1354–1359 (2020). https://doi.org/10.1073/pnas.1916401117

Article  ADS  Google Scholar 

P. Liu, C. Ye, Ch, Xue, Ch. Zhang, Yu. Mu, and X. Sun, “Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry,” Atmos. Chem. Phys. 20 (7), 4153–4165 (2020). https://doi.org/10.5194/acp-20-4153-2020

Article  ADS  Google Scholar 

Y. Wang, F. Zhang, Z. Li, H. Tan, H. Xu, J. Ren, J. Zhao, W. Du, and Y. Sun, “Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing,” Atmos. Chem. Phys. 17 (8), 5239–5251 (2017). https://doi.org/10.5194/acp-17-5239-2017

Article  ADS  Google Scholar 

A. A. Vinogradova, D. P. Gubanova, M. A. Iordanskii, and A. I. Skorokhod, “The influence of meteorological conditions and long-range air mass transport on the winter near-surface aerosol composition in Moscow,” Atmos. Ocean. Opt. 35 (6), 758–768 (2022).

Article  Google Scholar 

E. P. Yausheva, V. A. Gladkikh, A. P. Kamardin, and V. P. Shmargunov, “Extreme events of aerosol pollution of the atmosphere in winter in Tomsk Akademgorodok,” Atmos. Ocean. Opt. 36 (S1), S65–S73 (2023).

Article  Google Scholar 

G. J. Zheng, F. K. Duan, H. Su, Y. L. Ma, Y. Cheng, B. Zheng, T. Huang, T. Kimoto, D. Chang, U. Poshl, Y. F. Cheng, and K. B. He, “Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions,” Atmos. Chem. Phys. 15 (6), 2969–2983 (2015).https://doi.org/10.5194/acp-15-2969-2015

Article  ADS  Google Scholar 

H. Herrmann, B. Ervens, H.-W. Jacobi, R. Wolke, P. Nowacki, and R. J. Zellner, “CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry,” J. Atmos. Chem. 36 (3), 231–284 (2000). https://doi.org/10.1023/A:1006318622743

Article  Google Scholar 

G. H. Wang, R. Y. Zhang, M. E. Gomes, Y. Song, L. Zhou, J. Cao, J. Hu, G. Tang, Zh. Chen, Z. Li, Z. Hu, C. Peng, C. Lian, Y. Chen, Y. Pan, Y. Zhang, Y. Sun, W. Li, T. Zhu, H. Tian, and M. Ge, “Persistent sulfate formation from London fog to Chinese haze,” Proc. Natl. Acad. Sci. U.S.A. 113 (48), 13 630–13 635 (2016). https://doi.org/10.1002/2013JD021426

Article  Google Scholar 

T. Ibusuki and K. Takeuchi, “Sulfur-dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous-solutions at environmental reaction condition,” Atmos. Environ. 21 (7), 1555–1560 (1987). https://doi.org/10.1016/0004-6981(87)90317-9

Article  ADS  Google Scholar 

A. N. Yermakov, A. E. Aloyan, V. O. Arutyunyan, and G. B. Pronchev, “A new source of sulfates in the atmosphere,” Atmos. Ocean. Opt. 37 (2), 166–173 (2024).

Article  Google Scholar 

G. B. Pronchev and A. N. Yermakov, “On the mechanism of nitrate formation in atmospheric haze particles,” Russ. J. Phys. Chem. B 18 (5), 1422–1429 (2024). https://doi.org/10.1134/S1990793124701148

Article  Google Scholar 

R. V. Grieken, Optimization and Environmental Application of TW-EPMA for Single Particle Analysis (University of Antwerp, Antwerpen, 2005).

Google Scholar 

C. Fountoukis and A. Nenes, “ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–\(}_^\)–Na+–\(}_^}\)–NO3–Cl−–H2O aerosols,” Atmos. Chem. Phys. 7 (17), 4639–4659 (2007). https://doi.org/10.5194/acp-7-4639-200710.5194/acp-7-4639-2007

Article  ADS  Google Scholar 

A. N. Yermakov, A. E. Aloyan, and V. O. Arutyunyan, “Acidity of aerosol particles in the rural atmosphere,” Russ. Meteorol. Hydrol. 46 (11), 762–767 (2021). https://doi.org/10.3103/S1068373921110054

Article  Google Scholar 

E. Swietlicki, H. C. Hansson, K. H.-C. Hameri, B. Sveningsson, A. Massling, G. McFiggans, P. H. McMurry, T. Petaj, P. Tunved, M. Gysel, D. Topping, E. Weingartner, U. Baltensperger, J. Rissler, A. Wiedensohler, and M. Kulmala, “Hydroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review,” Tellus B: Chem. Phys. Meteorol. 60 (3), 432–469 (2008). https://doi.org/10.1111/j.1600-0889.2008.00350.x

Article  ADS  Google Scholar 

M. D. Petters and S. M. Kreidenweis, “A single parameter representation of hygroscopic growth and cloud condensation nucleus activity,” Atmos. Chem. Phys. 7 (8), 1961–1971 (2007). https://doi.org/10.5194/acp-7-1961-2007

Article  ADS  Google Scholar 

P. He, B. Alexander, L. Geng, X. Chi, C. Shidong, H. Fan, H. Zhan, H. Kang, G. Zheng, Y. Cheng, H. Su, C. Liu, and Zh. Xie, “Isotopic constraints on heterogeneous sulfate production in Beijing haze,” Atmos. Chem. Phys. 18 (8), 5515–5528 (2018). https://doi.org/10.5194/acp-18-5515-2018

Article  ADS  Google Scholar 

L. R. Martin and M. W. Hill, “The effect of ionic strength on the manganese catalyzed oxidation of sulfur(IV),” Atmos. Environ. 21 (10), 2267–2270 (1987). https://doi.org/10.1016/0004-6981(87)90361-1

Article  ADS  Google Scholar 

R. B. Baranova, L. T. Bugaenko, I. N. Ivanina, N. N. Kostenko, and G. A. Starodubtsev, “Mechanism and main regularities of radiation-catalytic oxidation of sulfur dioxide in sulfuric acid solution,” Khim. Vys. Energ. 16 (3), 234–239 (1982).

Google Scholar 

B. Alexander, R. J. Park, D. J. Jacob, and S. Gong, “Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget,” J. Geophys. Res.: Atmos. 114 (D2) (2009). https://doi.org/10.1029/2008JD010486

J. R. Mc-Cabe, J. Savarino, B. Alexander, S. Gong, M. H. Thiemens, “Isotopic constraints on non-photochemical sulfate production in the Arctic winter,” Geophys. Rev. Lett. 33 (5), L05810 (2006). https://doi.org/10.1029/2005GL025164

Article  ADS  Google Scholar 

Ch. Brandt and R. van Eldik, “Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms,” Chem. Rev. 95 (1), 119–190 (1995). https://doi.org/10.1021/cr00033a006

Article  Google Scholar 

H. Wang, K. Lu, X. Chen, Q. Zhu, Q. Chen, S. Guo, M. Jiang, X. Li, D. Shang, Zh. Tan, Y. Wu, Z. Wu, Q. Zou, Y. Zheng, L. Zeng, T. Zhu, M. Hu, and Y. Zhang, “High N2O5 concentrations observed in urban Beijing: Implications of a large nitrate formation,” Environ. Sci. Technol. Lett. 4 (10), 416–420 (2017). https://doi.org/10.1021/acs.estlett.7b00341

Article  Google Scholar 

H. Wang, The Chemistry of Nitrate Radical (NO 3) and Denitrogen Pentoxide (N 2O 5) in Beijing (Springer, Singapore, 202)1

Y. Sun, Q. Jiang, Z. Wang, P. Fu, J. Li, T. Yang, and Y. Yin, “Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013,” J. Geophys. Res. 119 (7), 4380–4398 (2014). https://doi.org/10.1002/2014JD021641

Article  Google Scholar 

S. P. Sander, B. J. Finlayson-Pitts, R. R. Friedl, D. M. Golden, R. Huie, H. Keller-Rudel, S. E. Kolb, M. J. Kurylo, M. J. Molina, G. K. Moortgat, V. L. Orkin, A. R. Ravishankara, and P. H. Wine, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation No. 15 (Jet Propulsion Laboratory, Pasadena, CA, 2006).

Google Scholar 

Comments (0)

No login
gif