G. P. Kokhanenko, Yu. S. Balin, A. G. Borovoi, and M. M. Novoselov, “Studies of the orientation of crystalline particles in ice clouds by a scanning lidar,” Atmos. Ocean. Opt. 35 (5), 509–516 (2022).
Yu. S. Balin, B. V. Kaul’, and G. P. Kokhanenko, “Observations of specularly reflective particles and layers in crystal clouds,” Opt. Atmos. Okeana 24 (4), 293–299 (2011).
I. V. Samokhvalov, V. V. Bryukhanova, I. D. Bryukhanov, A. A. Doroshkevich, I. V. Zhivotenyuk, S. N. Volkov, N. S. Kirillov, E. V. Ni, A. P. Stykon, and O. Yu. Loktyushin, “Detection of local areas of horizontally oriented ice particles in upper clouds by a matrix polarization lidar and study of their characteristics,” in Proc. of the 10th International Scientific and Practical Conference “Actual Problems of Radiophysics,” September 26–29, 2023, Tomsk (Publishing House of Tomsk State University, Tomsk, 2023), pp. 201–203 [in Russian].
I. A. Veselovskii, M. Yu. Korenskii, B. V. Barchunov, N. I. Kas’yanik, D. V. Khudyakov, A. V. Kolgotin, and D. S. Korneev, “Study of atmospheric aerosol by lidar methods of Raman spectroscopy and laser-induced fluorescence,” in Proc. of XXX International Scientific Conference “Laser Information Technologies,” September 12–17, 2022, Novorossiysk (V.G. Shukhov Belgorod State Technological University, Novorossiysk, 2022), pp. 153–154 [in Russian].
K. Sassen, J. Zhu, and S. Benson, “Midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. IV. Optical displays,” Appl. Opt. 42 (3), 332–341 (2003). https://doi.org/10.1364/AO.42.000332
V. Noel and K. Sassen, “Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. Climatol. 44, 653–664 (2005). https://doi.org/10.1175/JAM2223.1
M. Hayman, S. Spuler, and B. Morley, “Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain,” Opt. Express 22 (14), 16 976–16 990 (2014). https://doi.org/10.1364/OE.22.016976
M. Hayman and J. P. Thayer, “General description of polarization in lidar using stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A 29 (4), 400–409 (2012). https://doi.org/10.1364/JOSAA.29.000400
J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, R. Begbie, “RAMSES: German meteorological service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51 (34), 8111–8131 (2012). https://doi.org/10.1364/AO.51.008111
J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008). https://doi.org/10.1029/2008JD010071
C. Tinel, J. Testud, J. Pelon, R. J. Hogan, A. Protat, J. Delanoe, and D. Bouniol, “The retrieval of ice-cloud properties from cloud radar and lidar synergy,” J. Appl. Meteorol. Climatol. 44 (6), 860–875 (2005). https://doi.org/10.1175/JAM2229.1
M. Haeffelin, L. Barthes, O. Bock, C. Boitel, S. Bony, D. Bouniol, H. Chepfer, M. Chiriaco, J. Cuesta, J. Delanoe, P. Drobinski, J.-L. Dufresne, C. Flamant, M. Grall, A. Hodzic, F. Hourdin, F. Lapouge, Y. Lemaitre, A. Mathieu, V. Noel, W. O’Hirok, J. Pelon, C. Pietras, A. Protat, B. Romand, G. Scialom, and R. Vautard, “SIRTA, a ground-based atmospheric observatory for cloud and aerosol research,” Ann. Geophys. 23 (2), 253–275 (2005). https://doi.org/10.5194/angeo-23-253-2005
Z. Wang, D. Liu, C. Xie, and J. Zhou, “An iterative algorithm to estimate LIDAR ratio for thin cirrus cloud over aerosol layer,” J. Opt. Soc. Korea 15 (3), 209–215 (2011). https://doi.org/10.3807/JOSK.2011.15.3.209
T. Wehr, T. Kubota, G. Tzeremes, K. Wallace, H. Nakatsuka, Y. Ohno, R. Koopman, S. Rusli, M. Kikuchi, M. Eisinger, T. Tanaka, M. Taga, P. Deghaye, E. Tomita, and D. Bernaerts, “The EarthCARE mission—science and system overview,” Atmos. Meas. Tech. 16 (15), 3581–3608 (2023). https://doi.org/10.5194/amt-16-3581-2023
D. M. Winker, J. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE—Int. Soc. Opt. Eng. 4893 (2003). https://doi.org/10.1117/12.466539
B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm,” J. Quant. Spectrosc. Radiat. Transfer 146, 123–139 (2014). https://doi.org/10.1016/j.jqsrt.2014.02.029
B. A. Baum, P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, “Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds,” J. Appl. Meteor. Climatol. 50 (5), 1037–1056 (2011). https://doi.org/10.1175/2010JAMC2608.1
C. Zhou and P. Yang, “Backscattering peak of ice cloud particles,” Opt. Express 23 (9), 11995–12003 (2015). https://doi.org/10.1364/OE.23.011995
I. V. Tkachev, D. N. Timofeev, N. V. Kustova, and A. V. Konoshonkin, “Databank of Mueller matrices on atmospheric ice crystals of 10–100 mm for interpretation of ground-based and space-borne lidar data,” Opt. Atmos. Okeana 34 (3), 199–206 (2021). https://doi.org/10.15372/AOO20210306
P. Yang, S. Hioki, M. Saito, C.-P. Kuo, B. Baum, and K.-N. Liou, “A review of ice cloud optical property models for passive satellite remote sensing,” Atmosphere 9 (12), 499 (2018). https://doi.org/10.3390/atmos9120499
A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, D. N. Timofeev, N. Kan, I. V. Tkachev, A. G. Borovoi, G. P. Kokhanenko, and Yu. S. Balin, “Calculation of scanning lidar returns while sounding cirrus clouds with quasi-horizontally oriented crystals,” Opt. Atmos. Okeana 36 (2), 116–121 (2023). https://doi.org/10.15372/AOO20230206
A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, “Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar,” Opt. Express 22 (20), 24 566–24 573 (2014). https://doi.org/10.1364/OE.22.024566
M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications (Academic Press, San Diego, 1999).
G. P. Kokhanenko, Y. S. Balin, M. G. Klemasheva, S. V. Nasonov, M. M. Novoselov, I. E. Penner, and S. V. Samoilova, “Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the ice clouds,” Atmos. Meas. Tech. 13 (3), 1113–1127 (2020). https://doi.org/10.5194/amt-13-1113-2020
G. P. Kokhanenko, Y. S. Balin, M. G. Klemasheva, S. V. Nasonov, M. M. Novoselov, I. E. Penner, and S. V. Samoilova, “Study of crystalline particles with a pronounced horizontal orientation using a scanning lidar LOSA-M3,” Proc. SPIE—Int. Soc. Opt. Eng. 11208, 112084 (2019). https://doi.org/10.1117/12.2540780
N. Kustova, A. Konoshonkin, G. Kokhanenko, Z. Wang, V. Shishko, D. Timofeev, and A. Borovoi, “Lidar backscatter simulation for angular scanning of cirrus clouds with quasi-horizontally oriented ice crystals,” Opt. Lett. 47 (15), 3648–3651 (2022). https://doi.org/10.1364/OL.463282
X. Zhu, Z. Wang, A. Konoshonkin, N. Kustova, V. Shishko, D. Timofeev, I. Tkachev, and D. Liu, “Backscattering properties of randomly oriented hexagonal hollow columns for lidar application,” Opt. Express 31 (21), 35257–35271 (2023). https://doi.org/10.1364/OE.502185
Yu. S. Balin, B. V. Kaul’, and G. P. Kokhanenko, “Observations of specularly reflective particles and layers in crystal clouds,” Opt. Atmos. Okeana 24 (4), 293–299 (2011).
A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970). https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2
A. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29, 1348–1357 (1972). https://doi.org/10.1175/1520-0469(1972)029<1348:I-CTV>2.0.CO;2
C. G. Schmitt and A. J. Heymsfield, “On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus,” J. Atmos. Sci. 64, 4514–4519 (2007). https://doi.org/10.1175/2007JAS2317.1
A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, V. A. Shishko, and D. N. Timofeev, Light Scattering by Atmospheric Ice Crystals in the Physical Optics Approximation (FIZMATLIT, Moscow, 2022) [in Russian].
Comments (0)