Estimation of Atmospheric Optical Parameters with Simultaneous Measurement of Vibrational-Rotational and Purely Rotational Raman Spectra

Aerosol and Climate, Ed. by K.Ya. Kondrat’ev (Gidrometeoizdat, Leningrad, 1991) [in Russian].

Google Scholar 

M. V. Panchenko, M. V. Kabanov, Yu. A. Pkhalagov, B. D. Belan, V. S. Kozlov, S. M. Sakerin, D. M. Kabanov, V. N. Uzhegov, N. N. Shchelkanov, V. V. Pol’kin, S. A. Terpugova, G. N. Tolmachev, E. P. Yausheva, M. Yu. Arshinov, D. V. Simonenkov, V. P. Shmargunov, D. G. Chernov, Yu. S. Turchinovich, Vas. V. Pol’kin, T. B. Zhuravleva, I. M. Nasrtdinov, and P. N. Zenkova, “Integrated studies of tropospheric aerosol at the Institute of Atmospheric Optics (development stages),” Atmos. Ocean. Opt. 33 (1), 27–41 (2020).

Article  Google Scholar 

B. D. Belan, V. E. Zuev, and M. V. Panchenko, “Main results of airborne sounding of aerosol conducted at the Institute of Atmospheric Optics from 1981 till 1991,” Atmos. Ocean. Opt. 8 (1–2), 131–156 (1995).

Google Scholar 

M. V. Panchenko, B. D. Belan, and V. S. Shamanaev, “Aircraft-laboratory of the IAO SB RAS in the study of the Lake Baykal environment,” Atmos. Ocean. Opt. 10 (4–5), 289–294 (1997).

Google Scholar 

M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, V. V. Pol’kin, and V. S. Kozlov, “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech. 5, 1513–1527 (2012). https://doi.org/10.5194/amt-5-1513-2012

Article  Google Scholar 

M. V. Panchenko and T. B. Zhuravleva, “Vertical profiles of optical and microphysical characteristics of tropospheric aerosol from aircraft measurements,” in Light Scattering Reviews, Vol. 10, Ed. by A. Kokhanovsky (Springer, 2015), pp. 199–234. https://doi.org/10.1007/978-3-662-46762-6

Book  Google Scholar 

J.-D. Paris, Ph. Ciais, Ph. Nedelec, A. Stohl, B. D. Belan, M. Yu. Arshinov, C. Carauge, G. Golitsyn, and I. G. Granberg, “New insights on the chemical composition of the Siberian air shed from the YAK-AEROSIB aircraft campaigns,” Bull. Am. Meteorol. Soc. 91 (5), 625–641 (2010). https://doi.org/10.1175/2009BAMS2663.1

Article  ADS  Google Scholar 

B. D. Belan, G. Ancellet, I. S. Andreeva, P. N. Antokhin, V. G. Arshinova, M. Y. Arshinov, Y. S. Balin, V. E. Barsuk, S. B. Belan, D. G. Chernov, D. K. Davydov, A. V. Fofonov, G. A. Ivlev, S. N. Kotel’nikov, A. S. Kozlov, A. V. Kozlov, K. Law, A. V. Mikhal’chishin, I. A. Moseikin, S. V. Nasonov, P. Nédélec, O. V. Okhlopkova, S. E. Ol’kin, M. V. Panchenko, J.-D. Paris, I. E. Penner, I. V. Ptashnik, T. M. Rasskazchikova, I. K. Reznikova, O. A. Romanovskii, A. S. Safatov, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. V. Yakovlev, and P. N. Zenkova, “Integrated airborne investigation of the air composition over the Russian Sector of the Arctic,” Atmos. Meas. Tech. 15, 3941–3967 (2022). https://doi.org/10.5194/amt-15-3941-2022

Article  Google Scholar 

C. Narbaud, J.-D. Paris, S. Wittig, A. Berchet, M. Saunois, Ph. Nédélec, B. D. Belan, M. Yu. Arshinov, S. B. Belan, D. Davydov, A. Fofonov, and A. Kozlov, “Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements,” Atmos. Chem. Phys. 23, 2293–2314 (2023). https://doi.org/10.5194/acp-23-2293-2023

Article  ADS  Google Scholar 

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Muller, A. Kolgotin, R. A. Ferrare, Ch. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: An intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017). https://doi.org/10.5194/acp-17-7229-2017

Article  ADS  Google Scholar 

A. Lopatin, O. Dubovik, D. Fuertes, G. Stenchikov, T. Lapyonok, I. Veselovskii, F. G. Wienhold, I. Shevchenko, Q. Hu, and S. Parajuli, “Synergy processing of diverse ground-based remote sensing and in situ data using the GRASP algorithm: Applications to radiometer, lidar, and radiosonde observations,” Atmos. Meas. Tech. 14, 2575–2614 (2021). https://doi.org/10.5194/amt-14-2575-2021

Article  Google Scholar 

P. Di Giloramo, B. De Rosa, D. Summa, N. Franco, and I. Veselovskii, “Measurements of aerosol size and microphysical properties: A comparison between raman lidar and airborne sensors,” J. Geophys. Res.: Atmos. 127, 1–18 (2022). https://doi.org/10.1029/2021JD036086

Article  Google Scholar 

G. Fiocco and G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964). https://doi.org/10.1175/1520-0469(1964)021<0323:ootala>2.0.co;2

Article  ADS  Google Scholar 

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, Ed. by A. Dabas, C. Loth, and J. Pelon (Editions de L’Ecole Polytechnique, 2000), pp. 155–158.

T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.‑C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of asian dust events of April 1998 in East Asia,” J. Geophys. Res. 106, 18 345–18 359 (2001). https://doi.org/10.1029/2000JD900554

Article  ADS  Google Scholar 

A. P. Chaikovsky, A. P. Ivanov, Yu. S. Balin, A. V. Elnikov, G. F. Tulinov, I. I. Plusnin, O. A. Bukin, and B. B. Chen, “CIS-LINET—LIdar NETwork for monitoring aerosol and ozone in CIS regions,” in Reviewed and Revised Papers Presented at the 23d ILRC, Ed. by Nagasava, N. Sugimoto (Nara, Japan, 2006), pp. 671–672.

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, and T. L. Mack, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008). https://doi.org/10.1364/AO.47.006734

Article  ADS  Google Scholar 

A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).

Article  ADS  Google Scholar 

V. Matthias, J. Bosenberg, V. Freudenthaler, A. Amodeo, D. Balis, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hagard, L. Komguem, S. Kreipl, R. Matthey, I. Mattis, V. Rizi, J. A. Rodriguez, V. Simeonov, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET Project. 1. Instruments,” Appl. Opt. 43, 961–976 (2004). https://doi.org/10.1364/AO.43.000961

Article  ADS  Google Scholar 

C. Bockmann, U. Wandinger, A. Ansmann, J. Bosenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hagard, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadembosch, J. A. Rodriguez, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET Project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43 (4), 977–989 (2004).

Article  ADS  Google Scholar 

G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bosenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol Lidar intercomparison in the framework of the EARLINET Project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43 (28), 5370–5385 (2004). https://doi.org/10.1364/AO.43.005370

Article  ADS  Google Scholar 

V. Shcherbakov, “Regularized algorithm for Raman lidar data processing,” Appl. Opt. 46, 4879–4889 (2007). https://doi.org/10.1364/ao.46.004879

Article  ADS  Google Scholar 

S. V. Samoilova and Yu. S. Balin, “Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency Raman lidar,” Appl. Opt. 47 (36), 6816–6831 (2008). https://doi.org/10.1364/ao.47.006816

Article  ADS  Google Scholar 

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22 (19), 2984–2990 (1983).

Article  ADS  Google Scholar 

Yu. F. Arshinov and S. M. Bobrovnikov, “Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38 (21), 4635–4638 (1999).

Article  ADS  Google Scholar 

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32 (15), 2758–2764 (1993).

Article  ADS  Google Scholar 

S. N. Volkov and B. V. Kaul’, “Method for determination of light backscattering and extinction coefficients in tropospheric aerosol layers using elastic-and Raman-backskatter-based lidar,” Atmos. Ocean. Opt. 7 (11–12), 864-869 (1994).

Google Scholar 

I. Veselovskii, D. N. Whiteman, M. Korenskiy, A. Suvorina, and D. Perez-Ramirez, “Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction,” Atmos. Meas. Tech. 8, 4111–4122 (2015). https://doi.org/10.5194/amt-8-4111-2015

Article  Google Scholar 

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, P. Colarco, M. Korenski, and A. Silva, “Retrievals of aerosol single-scattering albedo by multiwavelength lidar measurements: Evaluations with NASA Langley HSRL-2 during Discover-AQ field campaigns,” Remote Sens. Environ. 222, 144–164 (2019). https://doi.org/10.1016/j.rse.2018.12.022

Article  ADS  Google Scholar 

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, M. Korenskiy, P. Colarco, and A. Da Silva, “Optimized profile retrievals of aerosol microphysical properties from simulated spaceborne multiwavelength lidar,” J. Quant. Spectrosc. Radiat. 246, 106932 (2020). https://doi.org/10.1016/j.jqsrt.2020.106932

Article  Google Scholar 

O. Popovicheva, E. Molozhnikova, S. Nasonov, V. Potemkin, I. Penner, M. Klemasheva, I. Marinaite, L. Golobokova, S. Vratolis, K. Eleftheriadis, and T. Khodzer, “Industrial and wildfire aerosol pollution over world heritage Lake Baikal,” J. Environ. Sci. 107 (2021). https://doi.org/10.1016/j.jes.2021.01.011

Yu. S. Balin and A. D. Ershov, “Lidar investigations of the vertical structure of aerosol fields in the atmosphere in the Lake Baikal basin,” Atmos. Ocean. Opt. 13 (6–7), 586–591 (2000).

Google Scholar 

Yu. S. Balin, M. G. Klemasheva, G. P. Kokhanenko, S. V. Nasonov, M. M. Novoselov, I. E. Penner, and S. V. Samoilova, “Modernization of the LOZA-A2 lidar for simultaneous measurements of vibrational-rotational and purely rotational Raman spectra,” Atmos. Ocean. Opt. 36 (6), 810–815 (2023).

Article  Google Scholar 

J. Ackerman, “The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study,” Atmos. Ocean. Tech. 15, 1043–1050 (1998).

Article  Google Scholar 

D. Muller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007). https://doi.org/10.1029/2006JD008292

Article  ADS  Google Scholar 

F. G. Fernald, “Analysis of atmospheric lidar observations: Some comments,” Appl. Opt. 23, 1609–1613 (1984).

Article 

Comments (0)

No login
gif