Gannon NP, Wise KL, Knudsen ML (2021) Advanced templating for total shoulder arthroplasty. JBJS Rev. 9: https://doi.org/10.2106/JBJS.RVW.20.00089
Iannotti JP, Walker K, Rodriguez E et al (2019) Accuracy of 3-Dimensional planning, implant templating, and Patient-Specific instrumentation in anatomic total shoulder arthroplasty. J Bone Joint Surg Am 101:446–457. https://doi.org/10.2106/JBJS.17.01614
Iannotti JP, Weiner S, Rodriguez E et al (2015) Three-Dimensional imaging and templating improve glenoid implant positioning. JBJS 97:651. https://doi.org/10.2106/JBJS.N.00493
Walch G, Vezeridis PS, Boileau P et al (2015) Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study. J Shoulder Elb Surg 24:302–309. https://doi.org/10.1016/j.jse.2014.05.029
Walch G, Badet R, Boulahia A, Khoury A (1999) Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplasty 14:756–760. https://doi.org/10.1016/s0883-5403(99)90232-2
Article CAS PubMed Google Scholar
Can Kolac U, Paksoy A, Akgün D (2024) Three-dimensional planning, navigation, patient-specific instrumentation and mixed reality in shoulder arthroplasty: a digital orthopedic renaissance. EFORT Open Rev 9:517–527. https://doi.org/10.1530/EOR-23-0200
Article PubMed PubMed Central Google Scholar
Min KS, Fox HM, Bedi A et al (2020) Patient-specific planning in shoulder arthroplasty. Bone Joint J 102–B:365–370. https://doi.org/10.1302/0301-620X.102B3.BJJ-2019-1153.R1
Werner BS, Hudek R, Burkhart KJ, Gohlke F (2017) The influence of three-dimensional planning on decision-making in total shoulder arthroplasty. J Shoulder Elb Surg 26:1477–1483. https://doi.org/10.1016/j.jse.2017.01.006
Reid JJ, Kunkle BF, Greene AT et al (2022) Variability and reliability of 2-dimensional vs. 3-dimensional glenoid version measurements with 3-dimensional preoperative planning software. J Shoulder Elb Surg 31:302–309. https://doi.org/10.1016/j.jse.2021.07.011
Moroder P, Poltaretskyi S, Raiss P et al (2024) SECEC Grammont award 2024: the critical role of posture adjustment for range of motion simulation in reverse total shoulder arthroplasty preoperative planning. Bone Joint J 106–B:1284–1292. https://doi.org/10.1302/0301-620X.106B11.BJJ-2024-0110.R1
Moroder P, Urvoy M, Raiss P et al (2022) Patient posture affects simulated ROM in reverse total shoulder arthroplasty: A modeling study using preoperative planning software. Clin Orthop Relat Res 480:619–631. https://doi.org/10.1097/CORR.0000000000002003
Boutsiadis A, Lenoir H, Denard PJ et al (2018) The lateralization and distalization shoulder angles are important determinants of clinical outcomes in reverse shoulder arthroplasty. J Shoulder Elb Surg 27:1226–1234. https://doi.org/10.1016/j.jse.2018.02.036
Clinker C, Ishikawa H, Presson AP et al (2024) The effect of lateralization and distalization after Grammont-style reverse total shoulder arthroplasty. J Shoulder Elb Surg 33:2664–2670. https://doi.org/10.1016/j.jse.2024.03.049
Imiolczyk J-P, Imiolczyk T, Góralczyk A et al (2024) Lateralization and distalization shoulder angles do not predict outcomes in reverse shoulder arthroplasty for cuff tear arthropathy. J Shoulder Elb Surg 33:121–129. https://doi.org/10.1016/j.jse.2023.05.031
Gauci M-O, Glevarec L, Bronsard N et al (2024) Is preoperative 3D planning reliable for predicting postoperative clinical differences in range of motion between two stem designs in reverse shoulder arthroplasty. J Shoulder Elb Surg 33:1771–1780. https://doi.org/10.1016/j.jse.2023.11.031
Berhouet J, Jacquot A, Walch G et al (2022) The arm change position: additional information for optimizing range of motion after reverse shoulder arthroplasty. Orthop Traumatol Surg Res 108:103246. https://doi.org/10.1016/j.otsr.2022.103246
Matsumura N, Yamada Y, Oki S et al (2020) Three-dimensional alignment changes of the shoulder girdle between the supine and standing positions. J Orthop Surg Res 15:411. https://doi.org/10.1186/s13018-020-01934-w
Article PubMed PubMed Central Google Scholar
Moroder P, Akgün D, Plachel F et al (2020) The influence of posture and scapulothoracic orientation on the choice of humeral component retrotorsion in reverse total shoulder arthroplasty. J Shoulder Elb Surg 29:1992–2001. https://doi.org/10.1016/j.jse.2020.01.089
Caubère A, Rutigliano S, Bourdon S et al (2024) The effect of humeral tray thickness on glenohumeral loads in a reverse shoulder smart implant. Int Orthop 48:2881–2889. https://doi.org/10.1007/s00264-024-06282-6
Lädermann A, Gueorguiev B, Charbonnier C et al (2015) Scapular notching on kinematic simulated range of motion after reverse shoulder arthroplasty is not the result of impingement in adduction. Med (Baltim) 94:e1615. https://doi.org/10.1097/MD.0000000000001615
Boughebri O, Duparc F, Adam J-M, Valenti P (2011) Arthroscopic dynamic analysis of scapular Notching in reverse shoulder arthroplasty. Orthop Traumatol Surg Res 97:779–784. https://doi.org/10.1016/j.otsr.2011.07.014
Article CAS PubMed Google Scholar
Lévigne C, Garret J, Boileau P et al (2011) Scapular Notching in reverse shoulder arthroplasty: is it important to avoid it and how? Clin Orthop Relat Res 469:2512–2520. https://doi.org/10.1007/s11999-010-1695-8
Chalmers PN, Suter T, Jacxsens M et al (2019) Influence of radiographic viewing perspective on glenoid inclination measurement. J Shoulder Elb Arthroplast 3:2471549218824986. https://doi.org/10.1177/2471549218824986
Article PubMed PubMed Central Google Scholar
Henninger HB, Suter T, Chalmers PN (2021) Editorial commentary: is your critical shoulder angle accurate? Only if you can verify that you have the correct images. Arthroscopy 37:447–449. https://doi.org/10.1016/j.arthro.2020.11.021
Suter T, Gerber Popp A, Zhang Y et al (2015) The influence of radiographic viewing perspective and demographics on the critical shoulder angle. J Shoulder Elb Surg 24:e149–158. https://doi.org/10.1016/j.jse.2014.10.021
Nyffeler RW, Jost B, Pfirrmann CWA, Gerber C (2003) Measurement of glenoid version: conventional radiographs versus computed tomography scans. J Shoulder Elb Surg 12:493–496. https://doi.org/10.1016/s1058-2746(03)00181-2
Okutan AE, Surucu S, Laprus H, Raiss P (2024) The lateralization and distalization index is more reliable than angular radiographic measurements in reverse shoulder arthroplasty. Arch Orthop Trauma Surg 144:3247–3253. https://doi.org/10.1007/s00402-024-05448-6
Article PubMed PubMed Central Google Scholar
Valenti P, Zampeli F, Kazum E et al (2025) How to choose the best lateralization and distalization of the reverse shoulder arthroplasty to optimize the clinical outcome in cuff tear arthropathy. J Shoulder Elb Surg 34:e179–e186. https://doi.org/10.1016/j.jse.2024.07.051
Saccone L, Giovannetti de Sanctis E, Caldaria A et al (2024) Modified distalization shoulder angle and lateralization shoulder angle show weakly correlation with clinical outcomes following reverse shoulder arthroplasty. J Shoulder Elb Surg S1058–2746(24):00875–00879. https://doi.org/10.1016/j.jse.2024.10.007
Şahin K, Kaya HB, Koukos C et al (2025) Lateralization and distalization shoulder angles in reverse shoulder arthroplasty: are they still reliable and accurate in all patients and for all prosthetic designs? J Clin Med 14:1393. https://doi.org/10.3390/jcm14041393
Article CAS PubMed PubMed Central Google Scholar
Valenti P, Zampeli F, Kazum E et al (2024) How to choose the best lateralization and distalization of the reverse shoulder arthroplasty to optimize the clinical outcome in cuff tear arthropathy. J Shoulder Elb Surg S1058–2746(24):00695–00695. https://doi.org/10.1016/j.jse.2024.07.051
Werthel J-D, Walch G, Vegehan E et al (2019) Lateralization in reverse shoulder arthroplasty: a descriptive analysis of different implants in current practice. Int Orthop 43:2349–2360. https://doi.org/10.1007/s00264-019-04365-3
Polisetty TS, Grewal G, Kurowicki J et al (2022) Comparison of two-dimensional manual and three-dimensional surgicase and BLUEPRINT planning software measurements of glenoid version, inclination, and humeral subluxation. Seminars Arthroplasty: JSES 32:125–131.
Comments (0)