Impaired Aggrephagy, Interrupted Vesicular Trafficking, and Cellular Stress, Lead to Protein Aggregation, and Synaptic Dysfunction in Cerebellum of Children and Adults with Idiopathic Autism

Fatemi SH, Eschenlauer A, Aman J, Folsom TD, Chekouo T. Quantitative proteomics of dorsolateral prefrontal cortex reveals an early pattern of synaptic dysmaturation in children with idiopathic autism. Cereb Cortex. 2024;34:161–71.

PubMed  PubMed Central  Google Scholar 

Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. NeuroImage. 2010;49:63–70.

PubMed  Google Scholar 

American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5-TR. American Psychiatric Association Publishing; 2022.

La Monica I, Di Iorio MR, Sica A, Rufino F, Sotira C, Pastore L et al. Autism spectrum disorder: Genetic mechanisms and inheritance patterns. Genes (Basel). 2025;16. Available from: https://doi.org/10.3390/genes16050478

Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23:183–7.

PubMed  Google Scholar 

Nickl-Jockschat T, Habel U, Michel TM, Manning J, Laird AR, Fox PT, et al. Brain structure anomalies in autism spectrum disorder–a meta-analysis of VBM studies using anatomic likelihood Estimation. Hum Brain Mapp. 2012;33:1470–89.

PubMed  Google Scholar 

Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807.

PubMed  PubMed Central  Google Scholar 

Beaudin M, Matilla-Dueñas A, Soong B-W, Pedroso JL, Barsottini OG, Mitoma H, et al. The classification of autosomal recessive cerebellar ataxias: a consensus statement from the society for research on the cerebellum and ataxias task force. Cerebellum. 2019;18:1098–125.

PubMed  PubMed Central  CAS  Google Scholar 

Abraham JR, Szoko N, Barnard J, Rubin RA, Schlatzer D, Lundberg K, et al. Proteomic investigations of autism brain identify known and novel pathogenetic processes. Sci Rep. 2019;9:13118.

PubMed  PubMed Central  Google Scholar 

Broek JA, Guest PC, Rahmoune H, Bahn S. Proteomic analysis of post mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism. 2014;5:41.

PubMed  PubMed Central  Google Scholar 

Marui T, Sugano S. Age-related differences in cerebellar gene expression in autism spectrum disorder development. Research Square. 2025. Available from: https://doi.org/10.21203/rs.3.rs-5962714/v1

Fatemi SH, Folsom TD, Kneeland RE, Yousefi MK, Liesch SB, Thuras PD. Impairment of fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling and its downstream cognates ras-related C3 botulinum toxin substrate 1, amyloid beta A4 precursor protein, striatal-enriched protein tyrosine phosphatase, and Homer 1, in autism: a postmortem study in cerebellar vermis and superior frontal cortex. Mol Autism. 2013;4:21.

PubMed  PubMed Central  Google Scholar 

Folsom TD, Higgins L, Markowski TW, Griffin TJ, Fatemi SH. Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2-Methyl-6-(phenylethynyl)pyridine: relevance to developmental study of schizophrenia. Synapse. 2019;73:e22069.

PubMed  Google Scholar 

Mueller TM, Remedies CE, Haroutunian V, Meador-Woodruff JH. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain. Transl Psychiatry. 2015;5:e612.

PubMed  PubMed Central  CAS  Google Scholar 

Taha MS, Nouri K, Milroy LG, Moll JM, Herrmann C, Brunsveld L, et al. Subcellular fractionation and localization studies reveal a direct interaction of the fragile X mental retardation protein (FMRP) with nucleolin. PLoS ONE. 2014;9:e91465.

PubMed  PubMed Central  Google Scholar 

Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods. 2007;4:923–5.

PubMed  Google Scholar 

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300.

Google Scholar 

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023; Available from: http://www.R-project.org/

Desprez F, Ung DC, Vourc’h P, Jeanne M, Laumonnier F. Contribution of the dihydropyrimidinase-like proteins family in synaptic physiology and in neurodevelopmental disorders. Front Neurosci. 2023;17:1154446.

PubMed  PubMed Central  Google Scholar 

Tanaka M, Maeda N, Noda M, Marunouchi T. A chondroitin sulfate proteoglycan PTPzeta /RPTPbeta regulates the morphogenesis of purkinje cell dendrites in the developing cerebellum. J Neurosci. 2003;23:2804–14.

PubMed  PubMed Central  CAS  Google Scholar 

Santana-Bejarano MB, Grosso-Martínez PR, Puebla-Mora AG, Martínez-Silva MG, Nava-Villalba M, Márquez-Aguirre AL et al. Pleiotrophin and the expression of its receptors during development of the human cerebellar cortex. Cells. 2023;12. Available from: https://doi.org/10.3390/cells12131733

Hamza MM, Rey SA, Hilber P, Arabo A, Collin T, Vaudry D, et al. Early disruption of extracellular Pleiotrophin distribution alters cerebellar neuronal circuit development and function. Mol Neurobiol. 2016;53:5203–16.

PubMed  CAS  Google Scholar 

Basille-Dugay M, Hamza MM, Tassery C, Parent B, Raoult E, Bénard M, et al. Spatio-temporal characterization of the pleiotrophinergic system in mouse cerebellum: evidence for its key role during ontogenesis. Exp Neurol. 2013;247:537–51.

PubMed  CAS  Google Scholar 

Zhang M-M, Huo G-M, Cheng J, Zhang Q-P, Li N-Z, Guo M-X, et al. Gypenoside XVII, an active ingredient from gynostemma pentaphyllum, inhibits C3aR-associated synaptic pruning in stressed mice. Nutrients. 2022;14:2418.

PubMed  PubMed Central  CAS  Google Scholar 

Li R, Messing A, Goldman JE, Brenner M. GFAP mutations in Alexander disease. Int J Dev Neurosci. 2002;20:259–68.

PubMed  Google Scholar 

Ramocki MB, Zoghbi HY. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature. 2008;455:912–8.

PubMed  PubMed Central  CAS  Google Scholar 

Kelleher RJ 3rd, Bear MF. The autistic neuron: troubled translation? Cell. 2008;135:401–6.

PubMed  CAS  Google Scholar 

Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16:551–63.

PubMed  CAS  Google Scholar 

Wang SS-H, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83:518–32.

PubMed  PubMed Central  CAS  Google Scholar 

Kelly E, Meng F, Fujita H, Morgado F, Kazemi Y, Rice LC, et al. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nat Neurosci. 2020;23:1102–10.

PubMed  PubMed Central  CAS  Google Scholar 

Sepp M, Leiss K, Murat F, Okonechnikov K, Joshi P, Leushkin E, et al. Cellular development and evolution of the mammalian cerebellum. Nature. 2024;625:788–96.

PubMed  CAS  Google Scholar 

Aldinger KA, Thomson Z, Phelps IG, Haldipur P, Deng M, Timms AE, et al. Spatial and cell type transcriptional landscape of human cerebellar development. Nat Neurosci. 2021;24:1163–75.

PubMed  PubMed Central  CAS  Google Scholar 

Ament SA, Cortes-Gutierrez M, Herb BR, Mocci E, Colantuoni C, McCarthy MM. A single-cell genomic atlas for maturation of the human cerebellum during early childhood. Sci Transl Med. 2023;15:eade1283.

PubMed  CAS  Google Scholar 

Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

PubMed  PubMed Central  CAS  Google Scholar 

Akinlaja YO, Nishiyama A. Glial modulation of synapse development and plasticity: oligodendrocyte precursor cells as a new player in the synaptic quintet. Front Cell Dev Biol. 2024;12:1418100.

PubMed  PubMed Central  Google Scholar 

Eng DL, Eng LF. In: Nixon RA, Yuan A, editors. Glial fibrillary acidic protein: the intermediate filament protein of astrocytes in: cytoskeleton of the nervous system. Springer; 2011.

Zheng X, Yang J, Hou Y, Shi X, Liu K. Prediction of clinical progression in nervous system diseases: plasma glial fibrillary acidic protein (GFAP). Eur J Med Res. 2024;29(1):51.

PubMed  PubMed Central  CAS  Google Scholar 

De Meyer S, Alali S, Laroy M, Vande Casteele T, Van Cauwenberge M, Goossens J et al. Plasma vesicle-associated membrane protein 2 and glial fibrillary acidic protein associate with synaptic density in older adults without dementia. Brain Commun. 2025, in press.

Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism. 2014;5:3.

PubMed  PubMed Central  Google Scholar 

Lin NH, Jian WS, Snider N, Perng MD. Glial fibrillary acidic protein is pathologically modified in Alexander disease. J Biol Chem. 2024;300:107402.

PubMed  PubMed Central  CAS  Google Scholar 

Laurence JA, Fatemi SH. Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum. 2005;4:206–10.

PubMed  CAS  Google Scholar 

Zattoni M, Mearelli M, Vanni S, Colini Baldeschi A, Tran TH, Ferracin C, et al. Serpin signatures in prion and alzheimer’s diseases. Mol Neurobiol. 2022;59:3778–99.

PubMed 

Comments (0)

No login
gif