Donchin O, Timmann D. Helping patients with cerebellar disorders make most of [internet]heir [internet]emaining learning capacity [Internet]. Brain. 2019;142:492–5. https://doi.org/10.1093/brain/awz020.
Bando K, Honda T, Ishikawa K, Takahashi Y, Mizusawa H, Hanakawa T. Impaired adaptive motor learning is correlated with cerebellar hemispheric Gray matter atrophy in spinocerebellar ataxia patients: a voxel-based morphometry study. Front Neurol [Internet]. 2019;10:1183. https://doi.org/10.3389/fneur.2019.01183.
Hashimoto Y, Honda T, Matsumura K, Nakao M, Soga K, Katano K et al. Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movements. PLOS ONE [Internet]. 2015 Accessed 2024;10:e0119376. https://pubmed.ncbi.nlm.nih.gov/25785588/. https://doi.org/10.1371/journal.pone.0119376
Honda T, Nagao S, Hashimoto Y, Ishikawa K, Yokota T, Mizusawa H, S A [Internet]. 2018 Accessed. Tandem internal models execute motor learning in the cerebellum. Proc Natl Acad Sci U. 2024;115:7428–33. https://pubmed.ncbi.nlm.nih.gov/29941578/. https://doi.org/10.1073/pnas.1716489115
Honda T, Matsumura K, Hashimoto Y, Yokota T, Mizusawa H, Nagao S, et al. Temporal relationship between cerebellar motor learning impairment and ataxia deterioration of ataxia in patients with cerebellar degeneration. Cerebellum [Internet]. 2024;23:1280–92. https://doi.org/10.1007/s12311-023-01545-1.
Article CAS PubMed Google Scholar
Stoodley CJ, Schmahmann JD. Evidence of topographic organisation in the cerebellum of patients with motor control versus cognitive and affective processing. Cortex [internet]. 2010;46:831–44. https://doi.org/10.1016/j.cortex.2009.11.008.
Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, et al. Consensus paper: cerebellum and social cognition. Cerebellum [Internet]. 2020;19:833–68. https://doi.org/10.1007/s12311-020-01155-1.
Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, et al. Consensus paper: the roles of the cerebellum in motor control: the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87. https://doi.org/10.1007/s12311-011-0331-9.
Article PubMed PubMed Central Google Scholar
Liu H, Lin J, Shang H. Voxel-based meta-analysis of Gray matter and white matter changes in patients with spinocerebellar ataxia type 3. Front Neurol [Internet]. 2023;14:1197822. https://doi.org/10.3389/fneur.2023.1197822.
Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, et al. Structural brain damage in spinocerebellar ataxia type 2. Voxel-Based Morphometry Mov Disord [Internet]. 2008;23:899–903. https://doi.org/10.1002/mds.21982.
Scarpazza C, Tognin S, Frisciata S, Sartori G, Mechelli A. False-positive rates in voxel-based morphometry studies of the human brain: should we be worried? Neurosci Biobehav Rev [Internet]. 2015;52:49–55. https://doi.org/10.1016/j.neubiorev.2015.02.008.
Scarpazza C, De Simone MSD. Voxel-based morphometry: current perspectives. Neurosci Neuroecon. 2016;Volume:19–35. https://doi.org/10.2147/NAN.S66439.
Gaonkar B, Pohl K, Davatzikos C. [Internet]. Pattern-Based morphometry. Med Image Comput Comput Assist Interv. 2011;14:459–66. https://doi.org/10.1007/978-3-642-23629-7_56.
Article PubMed PubMed Central Google Scholar
Sereno MI, Diedrichsen J, Tachrount M, Testa-Silva G, d’Arceuil H, De Zeeuw C. The human cerebellum accounts for nearly 80% of the neocortical surface area. Proc Natl Acad Sci U S [Internet]. 2020;117:19538–43. https://doi.org/10.1073/pnas.2002896117.
Faber J, Kügler D, Bahrami E, Heinz L-S, Timmann D, Ernst TM, et al. CerebNet: A fast and reliable deep learning pipeline for detailed cerebellar subsegmentation. Neuroimaging [Internet]. 2022;264:119703. https://doi.org/10.1016/j.neuroimage.2022.119703.
Ferreira M, Schaprian T, Kügler D, Reuter M, Deike-Hoffmann K, Timmann D et al. Cerebellar volumetry in ataxia: Relationship to ataxia severity and duration. Cerebellum [Internet]. 2024 Accessed 2024;23:1521–9. https://link.springer.com/article/https://doi.org/10.1007/s12311-024-01659-0. https://doi.org/10.1007/s12311-024-01659-0.
Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology [Internet]. 2008;71:670–6. Available from: https://doi.org/10.1212/01.wnl.0000324625.00404.15
Moulaire P, Poulet PE, Petit E, Klockgether T, Durr A, Ashisawa T, et al. Temporal dynamics of the scale for the assessment and rating of spinocerebellar ataxia. Mov Disord [Internet]. 2023;38:35–44. https://doi.org/10.1002/mds.29255.
Wittens MMJ, Allemeersch G-J, Sima DM, Naeyaert M, Vanderhasselt T, Vanbinst A-M, et al. Inter- and intra-scanner variability of automated brain volumetry on three magnetic resonance imaging systems in alzheimer’s disease and controls. Front Aging Neurosci [Internet]. 2021. https://doi.org/10.3389/fnagi.2021.746982. https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2021.746982. 13:746982.
Fortin J-P, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage [Internet]. 2018;167:104–20. https://doi.org/10.1016/j.neuroimage.2017.11.024.
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics [Internet]. 2007;8:118–27. https://doi.org/10.1093/biostatistics/kxj037.
R Core Team. R: A language and environment for statistical computing. Vienna; 2023.
Mahdavi S, Lindner A, Schmidt-Samoa C, Müsch A-L, Dechent P, Wilke M. Neural correlates of sensorimotor adaptation: thalamic contributions to learning from sensory prediction error. Neuroimage [Internet]. 2024;303:120927. https://doi.org/10.1016/j.neuroimage.2024.120927.
Küper M, Wünnemann MJS, Thürling M, Stefanescu RM, Maderwald S, Elles HG, et al. Activation of the cerebellar cortex and the dentate nucleus in a Prism adaptation fMRI study. Hum Brain Mapp [Internet]. 2014;35:1574–86. https://doi.org/10.1002/hbm.22274.
Baizer JS, Kralj-Hans I, Glickstein M. Cerebellar lesions and Prism adaptation in macaque monkeys. J Neurophysiol [Internet]. 1999;81:1960–5. https://doi.org/10.1152/jn.1999.81.4.1960.
Article CAS PubMed Google Scholar
Norris SA, Hathaway EN, Taylor JA, Thach WT. Cerebellar inactivation impairs memory of learned Prism gaze-reach calibrations. J Neurophysiol [Internet]. 2011;105:2248–59. https://doi.org/10.1152/jn.01009.2010.
Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural correlates of reach errors. J Neurosci [Internet]. 2005;25:9919–31. https://doi.org/10.1523/JNEUROSCI.1874-05.2005.
Article CAS PubMed Google Scholar
Chapman HL, Eramudugolla R, Gavrilescu M, Strudwick MW, Loftus A, Cunnington R, et al. Neural mechanisms underlying Spatial realignment during adaptation to optical wedge prisms. Neuropsychologia [Internet]. 2010;48:2595–601. https://doi.org/10.1016/j.neuropsychologia.2010.05.006.
Luauté J, Schwartz S, Rossetti Y, Spiridon M, Rode G, Boisson D, et al. Dynamic changes in brain activity during Prism adaptation. J Neurosci [Internet] 2009 Accessed. 2024;29:169–78. https://doi.org/10.1523/JNEUROSCI.3054-08.2009. https://pubmed.ncbi.nlm.nih.gov/19129395/.
Danckert J, Ferber S, Goodale MA. Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. Eur J Neurosci [Internet]. 2008;28:1696–704. https://doi.org/10.1111/j.1460-9568.2008.06460.x.
Nezafat R, Shadmehr R, Holcomb HH. Long-term adaptation to dynamics of reaching movements: a PET study. Exp Brain Res [Internet]. 2001 [cited 2024 Dec 12];140:66–76. Available from: https://pubmed.ncbi.nlm.nih.gov/11500799/
Stefanescu MR, Dohnalek M, Maderwald S, Thürling M, Minnerop M, Beck A et al. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain [Internet]. 2015;138:1182–97. Available from: https://doi.org/10.1093/brain/awv064
Nettekoven C, Zhi D, Shahshahani L, Pinho AL, Saadon-Grosman N, Buckner RL, et al. A hierarchical atlas of the human cerebellum for functional precision mapping. Nat Commun [Internet]. 2024;15:8376. https://doi.org/10.1038/s41467-024-52371-w. https://www.nature.com/articles/s41467-024-52371-w.
Article CAS PubMed Google Scholar
Guell X, Schmahmann JD, Gabrieli JDE, Ghosh SS. Functional gradients of the cerebellum. eLife [Internet]. 2018 Accessed 2024;7. https://pubmed.ncbi.nlm.nih.gov/30106371/:e36652. https://doi.org/10.7554/eLife.36652
Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage Clin [Internet]. 2016;12:765–75. https://doi.org/10.1016/j.nicl.2016.10.013.
Comments (0)