Specific Contribution of the Cerebellar Inferior Posterior Lobe to Motor Learning in Degenerative Cerebellar Ataxia

Donchin O, Timmann D. Helping patients with cerebellar disorders make most of [internet]heir [internet]emaining learning capacity [Internet]. Brain. 2019;142:492–5. https://doi.org/10.1093/brain/awz020.

Article  PubMed  Google Scholar 

Bando K, Honda T, Ishikawa K, Takahashi Y, Mizusawa H, Hanakawa T. Impaired adaptive motor learning is correlated with cerebellar hemispheric Gray matter atrophy in spinocerebellar ataxia patients: a voxel-based morphometry study. Front Neurol [Internet]. 2019;10:1183. https://doi.org/10.3389/fneur.2019.01183.

Article  PubMed  Google Scholar 

Hashimoto Y, Honda T, Matsumura K, Nakao M, Soga K, Katano K et al. Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movements. PLOS ONE [Internet]. 2015 Accessed 2024;10:e0119376. https://pubmed.ncbi.nlm.nih.gov/25785588/. https://doi.org/10.1371/journal.pone.0119376

Honda T, Nagao S, Hashimoto Y, Ishikawa K, Yokota T, Mizusawa H, S A [Internet]. 2018 Accessed. Tandem internal models execute motor learning in the cerebellum. Proc Natl Acad Sci U. 2024;115:7428–33. https://pubmed.ncbi.nlm.nih.gov/29941578/. https://doi.org/10.1073/pnas.1716489115

Honda T, Matsumura K, Hashimoto Y, Yokota T, Mizusawa H, Nagao S, et al. Temporal relationship between cerebellar motor learning impairment and ataxia deterioration of ataxia in patients with cerebellar degeneration. Cerebellum [Internet]. 2024;23:1280–92. https://doi.org/10.1007/s12311-023-01545-1.

Article  CAS  PubMed  Google Scholar 

Stoodley CJ, Schmahmann JD. Evidence of topographic organisation in the cerebellum of patients with motor control versus cognitive and affective processing. Cortex [internet]. 2010;46:831–44. https://doi.org/10.1016/j.cortex.2009.11.008.

Article  PubMed  Google Scholar 

Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, et al. Consensus paper: cerebellum and social cognition. Cerebellum [Internet]. 2020;19:833–68. https://doi.org/10.1007/s12311-020-01155-1.

Article  PubMed  Google Scholar 

Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, et al. Consensus paper: the roles of the cerebellum in motor control: the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87. https://doi.org/10.1007/s12311-011-0331-9.

Article  PubMed  PubMed Central  Google Scholar 

Liu H, Lin J, Shang H. Voxel-based meta-analysis of Gray matter and white matter changes in patients with spinocerebellar ataxia type 3. Front Neurol [Internet]. 2023;14:1197822. https://doi.org/10.3389/fneur.2023.1197822.

Article  PubMed  Google Scholar 

Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, et al. Structural brain damage in spinocerebellar ataxia type 2. Voxel-Based Morphometry Mov Disord [Internet]. 2008;23:899–903. https://doi.org/10.1002/mds.21982.

Article  PubMed  Google Scholar 

Scarpazza C, Tognin S, Frisciata S, Sartori G, Mechelli A. False-positive rates in voxel-based morphometry studies of the human brain: should we be worried? Neurosci Biobehav Rev [Internet]. 2015;52:49–55. https://doi.org/10.1016/j.neubiorev.2015.02.008.

Article  PubMed  Google Scholar 

Scarpazza C, De Simone MSD. Voxel-based morphometry: current perspectives. Neurosci Neuroecon. 2016;Volume:19–35. https://doi.org/10.2147/NAN.S66439.

Article  Google Scholar 

Gaonkar B, Pohl K, Davatzikos C. [Internet]. Pattern-Based morphometry. Med Image Comput Comput Assist Interv. 2011;14:459–66. https://doi.org/10.1007/978-3-642-23629-7_56.

Article  PubMed  PubMed Central  Google Scholar 

Sereno MI, Diedrichsen J, Tachrount M, Testa-Silva G, d’Arceuil H, De Zeeuw C. The human cerebellum accounts for nearly 80% of the neocortical surface area. Proc Natl Acad Sci U S [Internet]. 2020;117:19538–43. https://doi.org/10.1073/pnas.2002896117.

Article  CAS  Google Scholar 

Faber J, Kügler D, Bahrami E, Heinz L-S, Timmann D, Ernst TM, et al. CerebNet: A fast and reliable deep learning pipeline for detailed cerebellar subsegmentation. Neuroimaging [Internet]. 2022;264:119703. https://doi.org/10.1016/j.neuroimage.2022.119703.

Article  Google Scholar 

Ferreira M, Schaprian T, Kügler D, Reuter M, Deike-Hoffmann K, Timmann D et al. Cerebellar volumetry in ataxia: Relationship to ataxia severity and duration. Cerebellum [Internet]. 2024 Accessed 2024;23:1521–9. https://link.springer.com/article/https://doi.org/10.1007/s12311-024-01659-0. https://doi.org/10.1007/s12311-024-01659-0.

Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology [Internet]. 2008;71:670–6. Available from: https://doi.org/10.1212/01.wnl.0000324625.00404.15

Moulaire P, Poulet PE, Petit E, Klockgether T, Durr A, Ashisawa T, et al. Temporal dynamics of the scale for the assessment and rating of spinocerebellar ataxia. Mov Disord [Internet]. 2023;38:35–44. https://doi.org/10.1002/mds.29255.

Article  PubMed  Google Scholar 

Wittens MMJ, Allemeersch G-J, Sima DM, Naeyaert M, Vanderhasselt T, Vanbinst A-M, et al. Inter- and intra-scanner variability of automated brain volumetry on three magnetic resonance imaging systems in alzheimer’s disease and controls. Front Aging Neurosci [Internet]. 2021. https://doi.org/10.3389/fnagi.2021.746982. https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2021.746982. 13:746982.

Article  PubMed  Google Scholar 

Fortin J-P, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage [Internet]. 2018;167:104–20. https://doi.org/10.1016/j.neuroimage.2017.11.024.

Article  PubMed  Google Scholar 

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics [Internet]. 2007;8:118–27. https://doi.org/10.1093/biostatistics/kxj037.

Article  PubMed  Google Scholar 

R Core Team. R: A language and environment for statistical computing. Vienna; 2023.

Mahdavi S, Lindner A, Schmidt-Samoa C, Müsch A-L, Dechent P, Wilke M. Neural correlates of sensorimotor adaptation: thalamic contributions to learning from sensory prediction error. Neuroimage [Internet]. 2024;303:120927. https://doi.org/10.1016/j.neuroimage.2024.120927.

Article  PubMed  Google Scholar 

Küper M, Wünnemann MJS, Thürling M, Stefanescu RM, Maderwald S, Elles HG, et al. Activation of the cerebellar cortex and the dentate nucleus in a Prism adaptation fMRI study. Hum Brain Mapp [Internet]. 2014;35:1574–86. https://doi.org/10.1002/hbm.22274.

Article  PubMed  Google Scholar 

Baizer JS, Kralj-Hans I, Glickstein M. Cerebellar lesions and Prism adaptation in macaque monkeys. J Neurophysiol [Internet]. 1999;81:1960–5. https://doi.org/10.1152/jn.1999.81.4.1960.

Article  CAS  PubMed  Google Scholar 

Norris SA, Hathaway EN, Taylor JA, Thach WT. Cerebellar inactivation impairs memory of learned Prism gaze-reach calibrations. J Neurophysiol [Internet]. 2011;105:2248–59. https://doi.org/10.1152/jn.01009.2010.

Article  PubMed  Google Scholar 

Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural correlates of reach errors. J Neurosci [Internet]. 2005;25:9919–31. https://doi.org/10.1523/JNEUROSCI.1874-05.2005.

Article  CAS  PubMed  Google Scholar 

Chapman HL, Eramudugolla R, Gavrilescu M, Strudwick MW, Loftus A, Cunnington R, et al. Neural mechanisms underlying Spatial realignment during adaptation to optical wedge prisms. Neuropsychologia [Internet]. 2010;48:2595–601. https://doi.org/10.1016/j.neuropsychologia.2010.05.006.

Article  PubMed  Google Scholar 

Luauté J, Schwartz S, Rossetti Y, Spiridon M, Rode G, Boisson D, et al. Dynamic changes in brain activity during Prism adaptation. J Neurosci [Internet] 2009 Accessed. 2024;29:169–78. https://doi.org/10.1523/JNEUROSCI.3054-08.2009. https://pubmed.ncbi.nlm.nih.gov/19129395/.

Article  CAS  Google Scholar 

Danckert J, Ferber S, Goodale MA. Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. Eur J Neurosci [Internet]. 2008;28:1696–704. https://doi.org/10.1111/j.1460-9568.2008.06460.x.

Article  PubMed  Google Scholar 

Nezafat R, Shadmehr R, Holcomb HH. Long-term adaptation to dynamics of reaching movements: a PET study. Exp Brain Res [Internet]. 2001 [cited 2024 Dec 12];140:66–76. Available from: https://pubmed.ncbi.nlm.nih.gov/11500799/

Stefanescu MR, Dohnalek M, Maderwald S, Thürling M, Minnerop M, Beck A et al. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain [Internet]. 2015;138:1182–97. Available from: https://doi.org/10.1093/brain/awv064

Nettekoven C, Zhi D, Shahshahani L, Pinho AL, Saadon-Grosman N, Buckner RL, et al. A hierarchical atlas of the human cerebellum for functional precision mapping. Nat Commun [Internet]. 2024;15:8376. https://doi.org/10.1038/s41467-024-52371-w. https://www.nature.com/articles/s41467-024-52371-w.

Article  CAS  PubMed  Google Scholar 

Guell X, Schmahmann JD, Gabrieli JDE, Ghosh SS. Functional gradients of the cerebellum. eLife [Internet]. 2018 Accessed 2024;7. https://pubmed.ncbi.nlm.nih.gov/30106371/:e36652. https://doi.org/10.7554/eLife.36652

Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage Clin [Internet]. 2016;12:765–75. https://doi.org/10.1016/j.nicl.2016.10.013.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif