Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.
Qiu DL, Knöpfel T. An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber- purkinje neuron long-term potentiation. J Neurosci. 2007;27:3408–15.
CAS PubMed PubMed Central Google Scholar
Wang DJ, Su LD, Wang YN, Yang D, Sun CL, Zhou L, Wang XX, Shen Y. Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci. 2014;34(6):2355–64.
CAS PubMed PubMed Central Google Scholar
D’Errico A, Prestori F, D’Angelo E. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J Physiol. 2009;587:5843–57.
PubMed PubMed Central Google Scholar
Piochon C, Levenes C, Ohtsuki G, Hansel C. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J Neurosci. 2010;30:15330–5.
CAS PubMed PubMed Central Google Scholar
Garrido JA, Luque NR, D’Angelo E, Ros E. Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation. Front Neural Circuits. 2013;7:159.
PubMed PubMed Central Google Scholar
van Beugen BJ, Qiao X, Simmons DH, De Zeeuw CI, Hansel C. Enhanced AMPA receptor function promotes cerebellar long-term depression rather than potentiation. Learn Mem. 2014;21(12):662–7.
PubMed PubMed Central Google Scholar
Yamazaki T, Nagao S, Lennon W, Tanaka S. Modeling memory consolidation during post training periods in cerebellovestibular learning. Proc. Natl. Acad. Sci. USA 112, 3541–3546 (2015).
Roggeri L, Rivieccio B, Rossi P, D’Angelo E. Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. J Neurosci. 2008;28:6354–9.
CAS PubMed PubMed Central Google Scholar
Márquez-Ruiz J, Cheron G. Sensory stimulation-dependent plasticity in the cerebellar cortex of alert mice. PLoS ONE. 2012;7(4):e36184.
PubMed PubMed Central Google Scholar
Palay SL, Chan-Palay V. Cerebellar cortex: cytology and organization. J Neurol Sci. 1974;27(1):128–9.
Häusser M, Clarck BA. Tonic synaptic Inhibition modulates neural output pattern and Spatiotemporal synaptic integration. Neuron. 1997;19(3):665–78.
Mittmann W, Koch U, Häusser M. Feed-forward Inhibition shapes the Spike output of cerebellar purkinje cells. J Physiol. 2005;563:369–78.
Bower JM. Model-founded explorations of the roles of molecular layer Inhibition in regulating purkinje cell responses in cerebellar cortex: more trouble for the beam hypothesis. Front Cell Neurosci. 2010;4:27.
PubMed PubMed Central Google Scholar
Chu CP, Bing YH, Qiu DL. Sensory stimulus evokes Inhibition rather than excitation in cerebellar purkinje cells in vivo in mice. Neurosci Lett. 2011;487:182–6.
Chu CP, Bing YH, Liu QR, Qiu DL. Synaptic responses evoked by tactile stimuli in purkinje cells in mouse cerebellar cortex Crus II in vivo. PLoS ONE. 2011;6:e22752.
CAS PubMed PubMed Central Google Scholar
Chu CP, Bing YH, Liu H, Qiu DL. Roles of molecular layer interneurons in sensory information processing in mouse cerebellar cortex Crus II in vivo. PLoS ONE. 2012;7(5):e37031.
CAS PubMed PubMed Central Google Scholar
Bing YH, Wu MC, Chu CP, Qiu DL. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron-Purkinje cell synapses in vivo in mice. Front Cell Neurosci. 2015;9:e214.
Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol. 2015;25:R1051–6.
Schwarz LA, Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J, Ibanes S, Malenka RC, Kremer EJ, Luo L. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature. 2015;524(7563):88–92.
CAS PubMed PubMed Central Google Scholar
Kimoto Y, Satoh K, Sakumoto T, Tohyama M, Shimizu N. Afferent fiber connections from the lower brain stem to the rat cerebellum by the horseradish peroxidase method combined with MAO staining, with special reference to noradrenergic neurons. J Hirnforsch. 1978;19:85–100.
Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR, Blakely RD. Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J Comp Neurol. 2000;420:211–32.
Foote SL, Bloom FE, Aston-Jones G. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev. 1983;63:844–914.
Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42:33–84.
Waterhouse BD, Navarra RL. The locus coeruleus-norepinephrine system and sensory signal processing: a historical review and current perspectives. Brain Res. 2019;1709:1–15.
Hein L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res. 2006;326(2):541–51.
Hirono M, Obata K. Alpha-adrenoceptive dual modulation of inhibitory GABAergic inputs to purkinje cells in the mouse cerebellum. J Neurophysiol. 2006;95:700–8.
Lippiello P, Hoxha E, Volpicelli F, Lo Duca G, Tempia F, Miniaci MC. Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum. Neuropharmacology. 2015;89:33–42.
Bylund DB. International union of Pharmacology nomenclature of adrenoceptors. Rev Pharmacol. 1994;46:121–36.
Wakita R, Tanabe S, Tabei K. Differential regulations of vestibulo-ocular reflex and optokinetic response by beta- and alpha2-adrenergic receptors in the cerebellar flocculus. Sci Rep. 2017;7:3944.
PubMed PubMed Central Google Scholar
Schambra UB, Mackensen GB, Stafford-Smith M, Haines DE, Schwinn DA. Neuron specific a adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience. 2005;135:507–23.
Aoki C, Go CG, Venkatesan C, Kurose H. Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res. 1994;650:181–204.
Talley EM, Rosin DL, Lee A, Guyenet PG, Lynch KR. Distribution of 2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol. 1996;372:111–34.
Hirono M, Matsunaga W, Chimura T, Obata K. Developmental enhancement of alpha2-adrenoceptor-mediated suppression of inhibitory synaptic transmission onto mouse cerebellar purkinje cells. Neuroscience. 2008;156:143–54.
Ennis M, Aston-Jones G. GABA-mediated Inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci. 1989;9(8):2973–81.
CAS PubMed PubMed Central Google Scholar
Sun N, Li BX, Hong YJ, Bing YH, Qiu DL, Chu CP. Noradrenaline depresses spontaneous complex spikes activity of cerebellar purkinje cells via α2-adrenergic receptor in vivo in mice. Neurosci Lett. 2019;703:38–44.
Cui LN, Sun N, Li BX, Wang LF, Zhang XY, Qiu DL, Chu CP. Noradrenaline inhibits complex spikes activity via the presynaptic PKA signaling pathway in mouse cerebellar slices. Neurosci Lett. 2020;729:135008.
Wang JY, Weng WC, Wang TQ, Liu Y, Qiu DL, Wu MC, Chu CP. Noradrenaline depresses facial stimulation-evoked cerebellar MLI-PC synaptic transmission via α2-AR/PKA signaling cascade in vivo in mice. Sci Rep. 2023;13:15908.
CAS PubMed PubMed Central Google Scholar
Wang JY, Liu Y, Qiu DL, Chu CP. Activation of α2A and α2B -adrenergic receptors inhibits tactile stimulation-evoked parallel fiber-Purkinje cell synaptic transmission in mouse cerebell
Comments (0)