Mann S, Frasca K, Scherrer S, et al. A review of leishmaniasis: current knowledge and future directions. Curr Trop Med Rep. 2021;8:121–32. https://doi.org/10.1007/s40475-021-00232-7.
Article PubMed PubMed Central Google Scholar
Tamiru HF, Mashalla YJ, Mohammed R, Tshweneagae GT. Cutaneous leishmaniasis a neglected tropical disease: community knowledge, attitude and practices in an endemic area Northwest Ethiopia. BMC Infect Dis. 2019;19:855. https://doi.org/10.1186/s12879-019-4506-1.
Article PubMed PubMed Central Google Scholar
DebRoy S, Prosper O, Mishoe A, Mubayi A. Challenges in modeling complexity of neglected tropical diseases: a review of dynamics of visceral leishmaniasis in resource limited settings. Emerg Themes Epidemiol. 2017;14:10. https://doi.org/10.1186/s12982-017-0065-3.
Article PubMed PubMed Central Google Scholar
Brindha J, Ballamurali MM, Kaushik C. An overview on the therapeutics of neglected infectious diseases—leishmaniasis and chagas diseases. Front Chem. 2021;9. https://doi.org/10.3389/fchem.2021.622286.
Jain S, Madjou S, Agua JFV, et al. Global leishmaniasis surveillance updates 2023: 3 years of the NTD road map. 2023. https://www.who.int/publications/i/item/who-wer-9945-653-669.
Gurel MS, Tekin B, Uzun S. Cutaneous leishmaniasis: a great imitator. Clin Dermatol. 2020;38:140–51. https://doi.org/10.1016/j.clindermatol.2019.10.008.
Abadías-Granado I, Diago A, Cerro PA, et al. Cutaneous and mucocutaneous leishmaniasis. Actas Dermo-Sifiliográficas (English edin). 2021;112:601–18. https://doi.org/10.1016/j.adengl.2021.05.011.
Strazzulla A, Cocuzza S, Pinzone MR, et al. Mucosal Leishmaniasis: an underestimated presentation of a neglected disease. Biomed Res Int. 2013;1–7. https://doi.org/10.1155/2013/805108
Gupta S, Pal A, Vyas SP. Drug delivery strategies for therapy of visceral leishmaniasis. Expert Opin Drug Deliv. 2010;7:371–402. https://doi.org/10.1517/17425240903548232.
Article CAS PubMed Google Scholar
Gupta AK, Das S, Kamran M, et al. The pathogenicity and virulence of Leishmania - interplay of virulence factors with host defenses. Virulence. 2022;13:903–35. https://doi.org/10.1080/21505594.2022.2074130.
Article CAS PubMed PubMed Central Google Scholar
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Res. 2017;6:750. https://doi.org/10.12688/f1000research.11120.1
de Menezes JPB, Guedes CES, Petersen AL de OA, et al. Advances in development of new treatment for leishmaniasis. Biomed Res Int. 2015;1–11. https://doi.org/10.1155/2015/815023
Reguera RM, Pérez-Pertejo Y, Gutiérrez-Corbo C, et al. Current and promising novel drug candidates against visceral leishmaniasis. Pure Appl Chem. 2019;91:1385–404. https://doi.org/10.1515/pac-2018-1102.
Sundar S, Singh B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin Ther Targets. 2018;22:467–86. https://doi.org/10.1080/14728222.2018.1472241.
Article CAS PubMed PubMed Central Google Scholar
Pradhan S, Schwartz RA, Patil A, et al. Treatment options for leishmaniasis. Clin Exp Dermatol. 2022;47:516–21. https://doi.org/10.1111/ced.14919.
Article CAS PubMed Google Scholar
Maltezou HC. Drug resistance in visceral leishmaniasis. J Biomed Biotechnol. 2010;1–8. https://doi.org/10.1155/2010/617521
Sundar S, Rai M. Advances in the treatment of leishmaniasis. Curr Opin Infect Dis. 2002;15:593–8. https://doi.org/10.1097/00001432-200212000-00007.
Article CAS PubMed Google Scholar
Singh S, Sivakumar R. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother. 2004;10:307–15. https://doi.org/10.1007/s10156-004-0348-9.
Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102. https://doi.org/10.1016/j.jconrel.2016.01.008.
Article CAS PubMed Google Scholar
Mahajan S, Law, Aalinkeel, et al. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomed. 2012;5301. https://doi.org/10.2147/IJN.S25871.
Sundar S, Chakravarty J. Liposomal amphotericin B and leishmaniasis: Dose and response. J Glob Infect Dis. 2010;2:159. https://doi.org/10.4103/0974-777X.62886.
Article PubMed PubMed Central Google Scholar
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21:2475–90. https://doi.org/10.1016/S0142-9612(00)00115-0.
Article CAS PubMed Google Scholar
Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379:201–9. https://doi.org/10.1016/j.ijpharm.2009.04.026.
Article CAS PubMed Google Scholar
Heurtault B, Saulnier P, Pech B, et al. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res. 2002;19:875–80. https://doi.org/10.1023/A:1016121319668.
Article CAS PubMed Google Scholar
Gao W, Hu C-MJ, Fang RH, Zhang L. Liposome-like nanostructures for drug delivery. J Mater Chem B. 2013;1:6569. https://doi.org/10.1039/c3tb21238f
Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27:1372. https://doi.org/10.3390/molecules27041372.
Article CAS PubMed PubMed Central Google Scholar
Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6. https://doi.org/10.3389/fphar.2015.00286.
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–9. https://doi.org/10.1016/j.tips.2009.08.004.
Article CAS PubMed Google Scholar
Nsairat H, Khater D, Sayed U, et al. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8:e09394. https://doi.org/10.1016/j.heliyon.2022.e09394.
Article CAS PubMed PubMed Central Google Scholar
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102. https://doi.org/10.1186/1556-276X-8-102.
Article CAS PubMed PubMed Central Google Scholar
Sheikholeslami B, Lam NW, Dua K, Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci. 2022;300:120574. https://doi.org/10.1016/j.lfs.2022.120574.
Article CAS PubMed Google Scholar
Frolov VA, Shnyrova AV, Zimmerberg J. Lipid polymorphisms and membrane shape. Cold Spring Harb Perspect Biol. 2011;3:a004747–a004747. https://doi.org/10.1101/cshperspect.a004747.
Article CAS PubMed PubMed Central Google Scholar
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;975. https://doi.org/10.2147/IJN.S68861.
Chowdhury DF. Pharmaceutical nanosystems: manufacture, characterization, and safety. In: Pharmaceutical sciences encyclopedia. New York: Wiley; 2010. pp 1–38.
Munye MM, Ravi J, Tagalakis AD, et al. Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Sci Rep. 2015;5:9292. https://doi.org/10.1038/srep09292.
Article CAS PubMed PubMed Central Google Scholar
Garg T, Goyal AK. Liposomes: targeted and controlled delivery system. Drug Delivery Lett. 2014;4:62–71.
Demel RA, De Kruyff B. The function of sterols in membranes. Biochimica et Biophysica Acta (BBA) - reviews on biomembranes. 1976;457:109–132. https://doi.org/10.1016/0304-4157(76)90008-3
Briuglia M-L, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5:231–42. https://doi.org/10.1007/s13346-015-0220-8.
Comments (0)