Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Reviews Disease Primers. 2018;4:1–20.
Koehler P, Stecher M, Cornely OA, Koehler D, Vehreschild MJ, Bohlius J, et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect. 2019;25:1200–12.
Article CAS PubMed Google Scholar
Hosseini-Moghaddam SM, Ouédraogo A, Naylor KL, Bota SE, Husain S, Nash DM, Paterson JM. Incidence and outcomes of invasive fungal infection among solid organ transplant recipients: a population-based cohort study. Transpl Infect Disease. 2020;22:13250.
Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis. 2024;24:428–38.
Allison DL, Willems HM, Jayatilake JAMS, Bruno VM, Peters BM, Shirtliff ME. Candida–bacteria interactions: their impact on human disease. Virulence Mech Bact Pathog. 2016;103–36.
Anderson MR, Klink K, Cohrssen A. Evaluation of vaginal complaints. JAMA. 2004;291(11):1368–79. https://doi.org/10.1001/jama.291.11.1368.
Article CAS PubMed Google Scholar
Molero G, Díez-Orejas R, Navarro-García F, Monteoliva L, Pla J, Gil C, et al. Candida albicans: genetics, dimorphism and pathogenicity. Int Microbiol : Official J Span Soc Microbiol. 1998;1:95–106.
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, et al. Candida Albicans-The virulence factors and clinical manifestations of infection. J Fungi (Basel). 2021;7(2):79. https://doi.org/10.3390/jof7020079.
Article CAS PubMed Google Scholar
Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Micro Biol. 2001;9:327–35.
Wenzel RP. Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis. 1995;20:1531–4.
Article CAS PubMed Google Scholar
Enoch DA, Yang H, Aliyu SH, Micallef C. The changing epidemiology of invasive fungal infections. Hum Fungal Pathogen Identification: Methods Protocols. 2017;10:17–65.
Maza PK, Bonfim-Melo A, Padovan ACB, Mortara RA, Orikaza CM, Ramos LMD, et al. Candida albicans: the ability to invade epithelial cells and survive under oxidative stress is unlinked to hyphal length. Front Microbiol. 2017;8:1235. https://doi.org/10.3389/fmicb.2017.01235.
Article PubMed PubMed Central Google Scholar
Li W-S, Chen Y-C, Kuo S-F, Chen F-J, Lee C-H. The impact of biofilm formation on the persistence of candidemia. Front Microbiol. 2018;9:1196. https://doi.org/10.3389/fmicb.2018.01196.
Article PubMed PubMed Central Google Scholar
Vera-González N, Shukla A. Advances in biomaterials for the prevention and disruption of Candida biofilms. Front Microbiol. 2020;11:538602. https://doi.org/10.3389/fmicb.2020.538602.
Article PubMed PubMed Central Google Scholar
Nett JE, Andes DR. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Disease Clin. 2016;30:51–83.
Lombardi T, Budtz-Jørgensen E. Treatment of denture-induced stomatitis: a review. Eur J Prosthodont Restor Dent. 1993;2:17–22.
Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA. Tackling the Emerg Ing threat of antifungal resistance to human health. Nat Rev Microbiol. 2022;20:557–71.
Article CAS PubMed PubMed Central Google Scholar
Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12(4):501–17. https://doi.org/10.1128/CMR.12.4.501.
Article CAS PubMed PubMed Central Google Scholar
Lepesheva GI, Waterman MR. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Et Biophys Acta (BBA) - Gen Subj. 2007;1770(3):467–77. https://doi.org/10.1016/j.bbagen.2006.07.007.
Douglas CM. Fungal β(1,3)-D-glucan synthesis. Med Mycol. 2001;39(Suppl 1):55–66. https://doi.org/10.1080/mmy.39.s1.55.66.
Article CAS PubMed Google Scholar
Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012;2012:713687. https://doi.org/10.1155/2012/713687
Lara HH, Romero-Urbina DG, Pierce C, et al. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol. 2015;13:91. https://doi.org/10.1186/s12951-015-0147-8.
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sinica B. 2023;13:4391–416.
Dembicka-Mączka D, Gryka-Deszczyńska M, Sitkiewicz J, Makara A, Fiegler-Rudol J, Wiench R. Evaluation of the disinfection efficacy of Er-YAG laser light on single-species Candida biofilms: systematic review. Microorganisms. 2025;13(4):942.
Leenders A, Marie S. The use of lipid formulations of amphotericin B for systemic fungal infections. Leukemia. 1996;10:1570–5.
Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T, Crawford RJ, Truong VK, Chapman J, Elbourne A. Antimicrobial metal nanomaterials: from passive to stimuli-activated applications. Adv Sci. 2020;7:1902913.
Li B, Pan L, Zhang H, Xie L, Wang X, Shou J, Qi Y, Yan X. Recent develop ments on using nanomaterials to combat Candida albicans. Front Chem. 2021;9:813973. https://doi.org/10.3389/fchem.2021.813973.
Article CAS PubMed PubMed Central Google Scholar
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Therapy. 2024;9:34.
Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881–90. https://doi.org/10.3201/eid0809.020063.
Article PubMed PubMed Central Google Scholar
DeQueiroz G, Day D. Antimicrobial activity and effectiveness of a com bination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. J Appl Microbiol. 2007;103:794–802.
Article CAS PubMed Google Scholar
Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Micro Biol. 2020;18:319–31.
Maliszewska I, Lisiak B, Popko K, Matczyszyn K. Enhancement of the efficacy of photodynamic inactivation of Candida albicans with the use of biogenic gold nanoparticles. Photochem Photobiol. 2017;93:1081–90.
Article CAS PubMed Google Scholar
Huang T, Li X, Maier M, O’Brien-Simpson NM, Heath DE, O’Connor AJ. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomater. 2023;158:56–79.
Article CAS PubMed Google Scholar
Olson JA, Adler-Moore JP, Jensen GM, Schwartz J, Dignani MC, Proffitt RT. Comparison of the physicochemical, antifungal, and toxic properties of two liposomal amphotericin B products. Antimicrob Agents Chemother. 2008;52(1):259–68. https://doi.org/10.1128/aac.00870-07.
Article CAS PubMed Google Scholar
Perez AP, Altube MJ, Schilrreff P, Apezteguia G, Celes FS, Zacchino S, et al. Topical amphotericin B in ultradeformable liposomes: formulation, skin penetration study, antifungal and antileishmanial activity In vitro. Colloids Surf B: Biointerfaces. 2016;139:190–8. https://doi.org/10.1016/j.colsurfb.2015.12.003.
Article CAS PubMed Google Scholar
Vera-González N, Bailey-Hytholt CM, Langlois L, de Camargo Ribeiro F, de Souza Santos EL, Junqueira JC, et al. Anidulafungin liposome nanoparticles exhibit antifungal activity against planktonic and biofilm Candida Albicans. J Biomed Mater Res A. 2020;108(11):2263–76. https://doi.org/10.1002/jbm.a.36984.
Comments (0)