Siegel RL, Giaquinto AN, Jemal A (2024) Cancer statistics, 2024. CA Cancer J Clin 74(1):12–49. https://doi.org/10.3322/caac.21820
Pignata S, Cecere SC, Du Bois A, Harter P, Heitz F (2017) Treatment of recurrent ovarian cancer. Ann Oncol 28(suppl_8):viii51–viii56. https://doi.org/10.1093/annonc/mdx441
Article CAS PubMed Google Scholar
Frezzini S, Lonardi S (2024) Spotlight on new hallmarks of drug-resistance towards personalized care for epithelial ovarian cancer. Cells. https://doi.org/10.3390/cells13070611
Article PubMed PubMed Central Google Scholar
Lee JM, Ledermann JA, Kohn EC (2014) PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol 25(1):32–40. https://doi.org/10.1093/annonc/mdt384
Zhang Y, Cao L, Nguyen D, Lu H (2016) TP53 mutations in epithelial ovarian cancer. Transl Cancer Res 5(6):650–663. https://doi.org/10.21037/tcr.2016.08.40
Article CAS PubMed Google Scholar
Lee Y, Miron A, Drapkin R, Nucci MR, Medeiros F, Saleemuddin A, Garber J, Birch C, Mou H, Gordon RW, Cramer DW, McKeon FD, Crum CP (2007) A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol 211(1):26–35. https://doi.org/10.1002/path.2091
Article CAS PubMed Google Scholar
Shaw PA, Rouzbahman M, Pizer ES, Pintilie M, Begley H (2009) Candidate serous cancer precursors in fallopian tube epithelium of BRCA1/2 mutation carriers. Mod Pathol 22(9):1133–1138. https://doi.org/10.1038/modpathol.2009.89
Wallis B, Bowman KR, Lu P, Lim CS (2023) The challenges and prospects of p53-based therapies in ovarian cancer. Biomolecules 13(1):159. https://doi.org/10.3390/biom13010159
Article CAS PubMed PubMed Central Google Scholar
Martinez JD (2010) Restoring p53 tumor suppressor activity as an anticancer therapeutic strategy. Future Oncol 6(12):1857–1862. https://doi.org/10.2217/fon.10.132
Article CAS PubMed Google Scholar
Raab M, Kostova I, Pena-Llopis S, Fietz D, Kressin M, Aberoumandi SM, Ullrich E, Becker S, Sanhaji M, Strebhardt K (2024) Rescue of p53 functions by in vitro-transcribed mRNA impedes the growth of high-grade serous ovarian cancer. Cancer Commun (Lond) 44(1):101–126. https://doi.org/10.1002/cac2.12511
Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JPT, Tschaharganeh DF, Kastenhuber ER, Barsotti AM, Culp-Hill R, Xue W, Ho YJ, Baslan T, Li X, Mayle A, de Stanchina E, Zender L, Tong DR, D’Alessandro A, Lowe SW, Prives C (2019) p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression. Cell 176(3):564-580 e19. https://doi.org/10.1016/j.cell.2018.11.011
Article CAS PubMed Google Scholar
Bixel K, Saini U, Kumar Bid H, Fowler J, Riley M, Wanner R, Deepa Priya Dorayappan K, Rajendran S, Konishi I, Matsumura N, Cohn DE, Selvendiran K (2017) Targeting STAT3 by HO-3867 induces apoptosis in ovarian clear cell carcinoma. Int J Cancer 141(9):1856–1866
CAS PubMed PubMed Central Google Scholar
Devor EJ, Schickling BM, Lapierre JR, Bender DP, Gonzalez-Bosquet J, Leslie KK (2021) The synthetic curcumin analog HO-3867 rescues suppression of PLAC1 expression in ovarian cancer cells. Pharmaceuticals (Basel) 14(9):942. https://doi.org/10.3390/ph14090942
Article CAS PubMed Google Scholar
Madan E, Parker TM, Bauer MR, Dhiman A, Pelham CJ, Nagane M, Kuppusamy ML, Holmes M, Holmes TR, Shaik K, Shee K, Kiparoidze S, Smith SD, Park YA, Gomm JJ, Jones LJ, Tomas AR, Cunha AC, Selvendiran K, Hansen LA, Fersht AR, Hideg K, Gogna R, Kuppusamy P (2018) The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53. J Biol Chem 293(12):4262–4276. https://doi.org/10.1074/jbc.RA117.000950
Article CAS PubMed PubMed Central Google Scholar
Karst AM, Jones PM, Vena N, Ligon AH, Liu JF, Hirsch MS, Etemadmoghadam D, Bowtell DD, Drapkin R (2014) Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. Cancer Res 74(4):1141–1152. https://doi.org/10.1158/0008-5472.CAN-13-2247
Article CAS PubMed Google Scholar
Huang HS, Chu SC, Hsu CF, Chen PC, Ding DC, Chang MY, Chu TY (2015) Mutagenic, surviving and tumorigenic effects of follicular fluid in the context of p53 loss: initiation of fimbria carcinogenesis. Carcinogenesis 36(11):1419–1428. https://doi.org/10.1093/carcin/bgv132
Article CAS PubMed Google Scholar
Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N, Zhang W, Chu TY (2021) Cellular models of development of ovarian high-grade serous carcinoma: a review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 54(5):e13029. https://doi.org/10.1111/cpr.13029
Article CAS PubMed PubMed Central Google Scholar
Karst AM, Levanon K, Drapkin R (2011) Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. Proc Natl Acad Sci U S A 108(18):7547–7552. https://doi.org/10.1073/pnas.1017300108
Article PubMed PubMed Central Google Scholar
Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, Chen JY, Ohman AW, Stepule CD, Kwak S, Karst AM, Hirsch MS, Setlur SR, Crum CP, Dinulescu DM, Drapkin R (2013) Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell 24(6):751–765. https://doi.org/10.1016/j.ccr.2013.10.013
Karst AM, Drapkin R (2012) Primary culture and immortalization of human fallopian tube secretory epithelial cells. Nat Protoc 7(9):1755–1764. https://doi.org/10.1038/nprot.2012.097
Article CAS PubMed PubMed Central Google Scholar
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):p11. https://doi.org/10.1126/scisignal.2004088
Gyorffy B (2024) Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation (Camb) 5(3):100625. https://doi.org/10.1016/j.xinn.2024.100625
Article CAS PubMed Google Scholar
Gyorffy B (2024) Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br J Pharmacol 181(3):362–374. https://doi.org/10.1111/bph.16257
Article CAS PubMed Google Scholar
Tang Z, Kang B, Li C, Chen T, Zhang Z (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 47(W1):W556–W560. https://doi.org/10.1093/nar/gkz430
Article CAS PubMed PubMed Central Google Scholar
Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, Varambally S (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19(8):649–658. https://doi.org/10.1016/j.neo.2017.05.002
Article CAS PubMed PubMed Central Google Scholar
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419
Article CAS PubMed Google Scholar
Bikadi Z, Hazai E (2009) Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J Cheminform 1:15. https://doi.org/10.1186/1758-2946-1-15
Comments (0)