A tribute to 40 years of CENP-A & centromere pioneer Bill Earnshaw

Bergmann JH, Rodríguez MG, Martins NMC, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LET, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340. https://doi.org/10.1038/emboj.2010.329

Article  PubMed  Google Scholar 

Cardinale S, Bergmann JH, Kelly D, Nakano M, Valdivia MM, Kimura H, Masumoto H, Larionov V, Earnshaw WC (2009) Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. MBoC 20:4194–4204. https://doi.org/10.1091/mbc.e09-06-0489

Article  PubMed  PubMed Central  Google Scholar 

Cox JV, Schenk EA, Olmsted JB (1983) Human anticentromere antibodies: distribution, characterization of antigens, and effect on microtubule organization. Cell 35:331–339. https://doi.org/10.1016/0092-8674(83)90236-2

Article  PubMed  Google Scholar 

Earnshaw WC, Heck MM (1985) Localization of topoisomerase II in mitotic chromosomes. J Cell Biol 100(5):1716–1725. https://rupress.org/jcb/article/100/5/1716/13250/Localization-of-topoisomerase-II-in-mitotic

Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321. https://doi.org/10.1007/BF00328227

Article  PubMed  Google Scholar 

Earnshaw WC, Halligan N, Cooke C, Rothfield N (1984) The kinetochore is part of the metaphase chromosome scaffold. J Cell Biol 98:352–357. https://doi.org/10.1083/jcb.98.1.352

Article  PubMed  Google Scholar 

Earnshaw WC, Halligan B, Cooke CA, Heck MM, Liu LF (1985) Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol 100:1706–1715. https://doi.org/10.1083/jcb.100.5.1706

Article  PubMed  Google Scholar 

Fritzler MJ, Kinsella TD, Garbutt E (1980) The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am J Med 69:520–526. https://doi.org/10.1016/0002-9343(80)90462-3

Article  PubMed  Google Scholar 

Gassmann R, Carvalho A, Henzing AJ, Ruchaud S, Hudson DF, Honda R, Nigg EA, Gerloff DL, Earnshaw WC (2004) Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 166:179–191. https://doi.org/10.1083/jcb.200404001

Article  PubMed  PubMed Central  Google Scholar 

Guldner HH, Lakomek HJ, Bautz FA (1984) Human anti-centromere Sera recognise a 19.5 kD non-histone chromosomal protein from HeLa cells. Clin Exp Immunol 58:13–20

PubMed  PubMed Central  Google Scholar 

Iida Y, Kim J-H, Kazuki Y, Hoshiya H, Takiguchi M, Hayashi M, Erliandri I, Lee H-S, Samoshkin A, Masumoto H, Earnshaw WC, Kouprina N, Larionov V, Oshimura M (2010) Human artificial chromosome with a conditional centromere for gene delivery and gene expression. DNA Res 17:293–301. https://doi.org/10.1093/dnares/dsq020

Article  PubMed  PubMed Central  Google Scholar 

Kouprina N, Petrov N, Molina O, Liskovykh M, Pesenti E, Ohzeki J, Masumoto H, Earnshaw WC, Larionov V (2018) Human artificial chromosome with regulated centromere: a tool for genome and cancer studies. ACS Synth Biol 7:1974–1989. https://doi.org/10.1021/acssynbio.8b00230

Article  PubMed  PubMed Central  Google Scholar 

Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, Nagase T, Kimura H, Larionov V, Masumoto H, Fukagawa T, Earnshaw WC (2020) H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci. https://doi.org/10.1242/jcs.242610

Article  PubMed  PubMed Central  Google Scholar 

Mejía JE, Alazami A, Willmott A, Marschall P, Levy E, Earnshaw WC, Larin Z (2002) Efficiency of de Novo centromere formation in human artificial chromosomes. Science 79:297–304. https://doi.org/10.1006/geno.2002.6704

Article  Google Scholar 

Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci 77:1627–1631. https://doi.org/10.1073/pnas.77.3.1627

Article  PubMed  PubMed Central  Google Scholar 

Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522. https://doi.org/10.1016/j.devcel.2008.02.001

Article  PubMed  PubMed Central  Google Scholar 

Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC (2021) Mitotic chromosomes. Semin Cell Dev Biol 117:7–29. https://doi.org/10.1016/j.semcdb.2021.03.014

Remnant L, Booth DG, Vargiu G, Spanos C, Kerr ARW, Earnshaw WC (2019) In vitro bioid: mapping the CENP-A microenvironment with high temporal and spatial resolution. Mol Biol Cell 30:1314–1325. https://doi.org/10.1091/mbc.E18-12-0799

Article  PubMed  PubMed Central  Google Scholar 

Ribeiro SA, Gatlin JC, Dong Y, Joglekar A, Cameron L, Hudson DF, Farr CJ, McEwen BF, Salmon ED, Earnshaw WC, Vagnarelli P (2009) Condensin regulates the stiffness of vertebrate centromeres. MBoC 20:2371–2380. https://doi.org/10.1091/mbc.e08-11-1127

Article  PubMed  PubMed Central  Google Scholar 

Ribeiro SA, Vagnarelli P, Dong Y, Hori T, McEwen BF, Fukagawa T, Flors C, Earnshaw WC (2010) A super-resolution map of the vertebrate kinetochore. Proc Natl Acad Sci USA 107:10484–10489. https://doi.org/10.1073/pnas.1002325107

Article  PubMed  PubMed Central  Google Scholar 

Sacristan C, Samejima K, Ruiz LA, Deb M, Lambers MLA, Buckle A, Brackley CA, Robertson D, Hori T, Webb S, Kiewisz R, Bepler T, van Kwawegen E, Risteski P, Vukušić K, Tolić IM, Müller-Reichert T, Fukagawa T, Gilbert N, Marenduzzo D, Earnshaw WC, Kops GJPL (2024) Condensin reorganizes centromeric chromatin during mitotic entry into a bipartite structure stabilized by cohesin. Cell 187:3006–3023. https://doi.org/10.1016/j.cell.2024.04.014

Article  PubMed  PubMed Central  Google Scholar 

Samejima K, Samejima I, Vagnarelli P, Ogawa H, Vargiu G, Kelly DA, de Lima Alves F, Kerr A, Green LC, Hudson DF, Ohta S, Cooke CA, Farr CJ, Rappsilber J, Earnshaw WC (2012) Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. J Cell Biol 199:755–770. https://doi.org/10.1083/jcb.201202155

Article  PubMed  PubMed Central  Google Scholar 

Steen VD, Ziegler GL, Rodnan GP, Medsger Jr TA (1984) Clinical and laboratory associations of anticentromere antibody in patients with progressive systemic sclerosis. Arthritis Rheumatism 27:125–131. https://doi.org/10.1002/art.1780270202

Article  PubMed  Google Scholar 

Tan EM, Rodnan GP, Garcia I, Moroi Y, Fritzler MJ, Peebles C (1980) Diversity of antinuclear antibodies in progressive systemic sclerosis. Arthritis Rheumatism 23:617–625. https://doi.org/10.1002/art.1780230602

Article  PubMed  Google Scholar 

Tramposch HD, Douglas Smith C, Senecal J-L, Rothfield N (1984) A long-term longitudinal study of anticentromere antibodies. Arthritis Rheumatism 27:121–124. https://doi.org/10.1002/art.1780270201

Article  PubMed  Google Scholar 

Tuffanelli DL, McKeon F, Kleinsmith DM, Burnham TK, Kirschner M (1983) Anticentromere and anticentriole antibodies in the scleroderma spectrum. Arch Dermatol 119:560–566. https://doi.org/10.1001/archderm.1983.01650310022004

Article  PubMed  Google Scholar 

Tyler-smith C, Gimelli G, Giglio S, Floridia G, Pandya A, Terzoli G, Warburton PE, Earnshaw WC, Zuffardi O (1999) Transmission of a fully functional human neocentromere through three generations. Am J Hum Genet 64:14401444

Google Scholar 

Vagnarelli P, Morrison C, Dodson H, Sonoda E, Takeda S, Earnshaw WC (2004) Analysis of Scc1-deficient cells defines a key metaphase role of vertebrate cohesin in linking sister kinetochores. EMBO Rep 5:167–171. https://doi.org/10.1038/sj.embor.7400077

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif