An updated molecular toolkit for genomics-assisted breeding of waxy sorghum [ (L.) Moench]

Ali GS, Eltaher S, Li J, Freeman B, Singh S (2025) GWAS identifies a polyembryony locus in mango: development of KASP and PACE markers for marker-assisted breeding. Front Plant Sci 16:1508027. https://doi.org/10.3389/fpls.2025.1508027

Article  PubMed  PubMed Central  Google Scholar 

Andrews S (2010) FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Armet AM, Deehan EC, O’Sullivan AF, Mota JF, Field CJ, Prado CM, Lucey AJ, Walter J (2022) Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe 30:764–785. https://doi.org/10.1016/j.chom.2022.04.016

Article  PubMed  CAS  Google Scholar 

Ashfaq H, Rani R, Perveen N, Babar AD, Maqsood U, Asif M, Steele KA, Arif M (2023) KASP mapping of QTLs for yield components using a RIL population in Basmati rice (Oryza sativa L.). Euphytica 219:79. https://doi.org/10.1007/s10681-023-03206-0

Article  CAS  Google Scholar 

Ayalew H, Peiris S, Chiluwal A, Kumar R, Tiwari M, Ostmeyer T, Bean S, Jagadish KSV (2022) Stable sorghum grain quality QTL were identified using SC35 × RTx430 mapping population. Plant Genome 15(3):e20227. https://doi.org/10.1002/tpg2.20227

Article  PubMed  CAS  Google Scholar 

Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11. https://doi.org/10.1186/s13100-015-0041-9

Article  PubMed  PubMed Central  Google Scholar 

Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT (2011) BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27(12):1691–1692. https://doi.org/10.1093/bioinformatics/btr174

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6(8):914–920. https://doi.org/10.1038/s41477-020-0733-0

Article  PubMed  Google Scholar 

Bertolini E, Rice BR, Braud M, Yang J, Hake S, Strable J, Lipka AE, Eveland AL (2025) Regulatory variation controlling architectural pleiotropy in maize. Nat Commun 16(1):1–18. https://doi.org/10.1038/s41467-025-56884-w

Article  CAS  Google Scholar 

Boatwright JL, Sapkota S, Jin HY, Schnable JC, Brenton Z, Boyles R, Kresovich S (2022) Sorghum Association Panel whole-genome sequencing establishes cornerstone resource for dissecting genomic diversity. Plant J 111(3):888–904. https://doi.org/10.1111/tpj.15853

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bojarczuk A, Skąpska S, Khaneghah AM, Marszałek K (2022) Health benefits of resistant starch: a review of the literature. J Func Foods 93:105094. https://doi.org/10.1016/j.jff.2022.105094

Article  CAS  Google Scholar 

Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP (2017) Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206(2):573–585. https://doi.org/10.1534/genetics.116.198499

Article  PubMed  PubMed Central  Google Scholar 

Boyles RE, Brenton ZW, Kresovich S (2019) Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. Plant J 97(1):19–39. https://doi.org/10.1111/tpj.14113

Article  PubMed  CAS  Google Scholar 

Boyles RE, Pfeiffer BK, Cooper EA, Rauh BL, Zielinski KJ, Myers MT, Brenton Z, Rooney WL, Kresovich S (2017) Genetic dissection of sorghum grain quality traits using diverse and segregating populations. Theor Appl Genet 130:697–716. https://doi.org/10.1007/s00122-016-2844-6

Article  PubMed  Google Scholar 

Brenton ZW, Cooper EA, Myers MT, Boyles RE, Shakoor N, Zielinski KJ, Rauh BL, Bridges WC, Morris GP, Kresovich S (2016) A genomic resource for the development, improvement, and exploitation of sorghum for bioenergy. Genetics 204:21–33. https://doi.org/10.1534/genetics.115.183947

Article  PubMed  PubMed Central  CAS  Google Scholar 

Budhlakoti N, Kushwaha AK, Rai A, Chaturvedi KK, Kumar A, Pradhan AK, Kumar U, Kumar RR, Juliana P, Mishra DC, Kumar S (2022) Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Front Genet 13:832153. https://doi.org/10.3389/fgene.2022.832153

Article  PubMed  PubMed Central  Google Scholar 

Chen BR, Wang CY, Wang P, Zhu ZX, Xu N, Shi GS, Yu M, Wang N, Li JH, Hou JM, Li SJ (2019) Genome-wide association study for starch content and constitution in sorghum [Sorghum bicolor (L.) Moench]. J Integr Agric 18(11):2446–2456. https://doi.org/10.1016/S2095-3119(19)62631-6

Article  CAS  Google Scholar 

Cooper EA, Brenton ZW, Flinn BS, Jenkins J, Shu SQ, Flowers D, Luo F, Wang YS, Xia P, Barry K, Daum C, Lipzen A, Yoshinaga Y, Schmutz J, Saski C, Vermerris W, Kresovich S (2019) A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genomics 20:420. https://doi.org/10.1186/s12864-019-5734-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

de Alencar Figueiredo LF, Sine B, Chantereau J, Mestres C, Fliedel G, Rami JF, Glaszmann JC, Deu M, Courtois B (2010) Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theor Appl Genet 121:1171–1185. https://doi.org/10.1007/s00122-010-1380-z

Article  CAS  Google Scholar 

Deschamps S, Zhang Y, Llaca V, Ye L, Sanyal A, King M, May G, Lin HN (2018) A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat Commun 9:4844. https://doi.org/10.1038/s41467-018-07271-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dipta B, Sood S, Mangal V, Bhardwaj V, Thakur AK, Kumar V, Singh B (2024) KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance. Mol Biol Rep 51(1):508. https://doi.org/10.1007/s11033-024-09455-z

Article  PubMed  CAS  Google Scholar 

Elhassan MS, Emmambux MN, Hays DB, Peterson GC, Taylor JR (2015) Novel biofortified sorghum lines with combined waxy (high amylopectin) starch and high protein digestibility traits: effects on endosperm and flour properties. J Cereal Sci 65:132–139. https://doi.org/10.1016/j.jcs.2015.06.017

Article  CAS  Google Scholar 

Fitzgerald MA, Rahman S, Resurreccion AP, Concepcion J, Daygon VD, Dipti SS, Kabir KA, Klingner B, Morell MK, Bird AR (2011) Identification of a major genetic determinant of glycaemic index in rice. Rice 4:66–74. https://doi.org/10.1007/s12284-011-9073-z

Article  Google Scholar 

Fox G, Nugusu Y, Nida H, Tedessa T, McLean G, Jordan D (2020) Evaluation of variation in Ethiopian sorghum injera quality with new imaging techniques. Cereal Chem 97(2):362–372. https://doi.org/10.1002/cche.10252

Article  CAS  Google Scholar 

Frei M, Siddhuraju P, Becker K (2003) Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chem 83(3):395–402. https://doi.org/10.1016/S0308-8146(03)00101-8

Article  CAS  Google Scholar 

Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9(1):2638. https://doi.org/10.1038/s41467-018-05051-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gorbet D, Weibel D (1972) Inheritance and genetic relationships of six endosperm types in sorghum. Crop Sci 12(3):378–382. https://doi.org/10.2135/cropsci1972.0011183X001200030037x

Griebel S, Adedayo A, Tuinstra M (2021) Genetic diversity for starch quality and alkali spreading value in sorghum. The Plant Genome 14(1):e20067. https://doi.org/10.1002/tpg2.20067

Harfouche AL, Jacobson DA, Kainer D, Romero JC, Harfouche AH, Mugnozza GS, Moshelion M, Tuskan GA, Keurentjes JJ, Altman A (2019) Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol 37(11):1217–1235. https://doi.org/10.1016/j.tibtech.2019.05.007

Article  PubMed  CAS  Google Scholar 

Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:1–6. https://doi.org/10.1186/gb-2004-5-6-225

Article  Google Scholar 

Comments (0)

No login
gif