Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ (2010) Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score1. J Dairy Sci 93(2):743–752. https://doi.org/10.3168/jds.2009-2730
Article CAS PubMed Google Scholar
Alvares CA, Stape JL, Sentelhas PC, De Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507
Bermann M, Legarra A, Hollifield MK, Masuda Y, Lourenco D, Misztal I (2021) Validation of single-step GBLUP genomic predictions from threshold models using the linear regression method: an application in chicken mortality. J Anim Breed Genet 138(1):4–13. https://doi.org/10.1111/jbg.12507
Article CAS PubMed Google Scholar
Calus MPL, Groen AF, Jong GD (2002) Genotype × Environment interaction for protein yield in Dutch dairy cattle as quantified by different models. J Dairy Sci 85(11):3115–3123. https://doi.org/10.3168/jds.S0022-0302(02)74399-3
Article CAS PubMed Google Scholar
Cardoso FF, Tempelman RJ (2012) Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction. J Anim Sci 90(7):2130–2141. https://doi.org/10.2527/jas.2011-4333
Article CAS PubMed Google Scholar
Carvalheiro R, Costilla R, Neves HHR, Albuquerque LG, Moore S, Hayes BJ (2019) Unraveling genetic sensitivity of beef cattle to environmental variation under tropical conditions. Genet Sel Evol 1–14:1. https://doi.org/10.1186/s12711-019-0470-x
Carvalho Filho I, Silva DA, Teixeira CS, Silva TL, Mota LFM, Albuquerque LG, Carvalheiro R (2022) Heteroscedastic reaction norm models improve the assessment of genotype by environment interaction for growth, reproductive, and visual score traits in Nellore cattle. Animals 12:2613. https://doi.org/10.3390/ani12192613
Article PubMed PubMed Central Google Scholar
Cesarani A, Garcia A, Hidalgo J, Degano L, Vicario D, Macciotta NPP, Lourenco D (2021) Genomic information allows for more accurate breeding values for milkability in dual-purpose Italian Simmental cattle. J Dairy Sci 104(5):5719–5727. https://doi.org/10.3168/jds.2020-19838
Article CAS PubMed Google Scholar
Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK : rising to the challenge of larger and richer datasets. GigaScience 4(7):1–16. https://doi.org/10.1186/s13742-015-0047-8
Chiaia HLJ, De Lemos MVA, Venturini GC, Aboujaoude C, Berton MP, Feitosa FB, Baldi F (2015) Genotype × environment interaction for age at first calving , scrotal circumference , and yearling weight in Nellore cattle using reaction norms in multitrait random regression models. J Anim Sci 93:1503–1510. https://doi.org/10.2527/jas2014-8217
Article CAS PubMed Google Scholar
Chu TT, Bastiaansen JWM, Berg P, Romé H, Marois D, Henshall J, Jensen J (2019) Use of genomic information to exploit genotype-by-environment interactions for body weight of broiler chicken in bio-secure and production environments. Genet Sel Evol 51(1):1–13. https://doi.org/10.1186/s12711-019-0493-3
Fernandes GA JR, Carvalheiro R, de Oliveira HN, Sargolzaei M, Costilla R, Ventura RV, de Albuquerque LG et al (2021) Imputation accuracy to whole-genome sequence in Nellore cattle. Genet Sel Evol 53(1):1–10. https://doi.org/10.1186/s12711-021-00622-5
Fordyce JA (2006) The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J Exp Biol 209(12):2377–2383. https://doi.org/10.1242/jeb.02271
Foulley JL, Quaas RL (1995) Heterogeneous variances in Gaussian linear mixed models. Genet Sel Evol 27(3):211. https://doi.org/10.1186/1297-9686-27-3-211
Article PubMed Central Google Scholar
Frischknecht M, Meuwissen THE, Bapst B, Seefried FR, Flury C, Garrick D, Gredler-Grandl B et al (2017) Short communication: genomic prediction using imputed whole-genome sequence variants in Brown Swiss Cattle. Journal of Dairy Science (2014), 1–5. https://doi.org/10.3168/jds.2017-12890
Hayes BJ, Daetwyler HD, Goddard ME (2016) Models for genome x environment interaction: examples in livestock. Crop Sci 56(5):2251–2259. https://doi.org/10.2135/cropsci2015.07.0451
Heidaritabar M, Calus MPL, Megens HJ, Vereijken A, Groenen MAM, Bastiaansen JWM (2016) Accuracy of genomic prediction using imputed whole-genome sequence data in white layers. J Anim Breed Genet 133(3):167–179. https://doi.org/10.1111/jbg.12199
Article CAS PubMed Google Scholar
Legarra A, Reverter A (2017) Can we frame and understand cross-validation results in animal breeding? Proc Assoc Advmt Anim Breed Genet 22:73–80
Legarra A, Reverter A (2018) Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method 01 Mathematical Sciences 0104 Statistics. Genet Sel Evol 50(1):1–18. https://doi.org/10.1186/s12711-018-0426-6
Article PubMed PubMed Central Google Scholar
Masuda Y (2020) User’s manual for QCF90. Available at http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=pdf:manual_qc.pdf
Meuwissen T, van den Berg I, Goddard M (2021) On the use of whole-genome sequence data for across-breed genomic prediction and fine-scale mapping of QTL. Genet Sel Evol 53(1):1–15. https://doi.org/10.1186/s12711-021-00607-4
Misztal I, Tsuruta S, Lourenco D, Aguilar I, Legarra A, Vitezica Z (2014) Manual for BLUPF90 family of programs. University of Georgia, Athens, p 199
Mota LFM, Costa LS, Garzón NAM, Passafaro TL, Silva DO, Abreu LRA, Ventura HT (2019) Unraveling the effect of body structure score on phenotypic plasticity for body weight at di ff erent ages in Guzerat cattle. Livest Sci 229:98–104. https://doi.org/10.1016/j.livsci.2019.09.015
Mota LFM, Fernandes GA Jr, Herrera AC, Scalez DCB, Espigolan R, Carvalheiro R, Albuquerque LG (2020) Genomic reaction norm models exploiting genotype × environment interaction on sexual precocity indicator traits in Nellore cattle. Anim Genet 51(December 2019):210–223. https://doi.org/10.1111/age.12902
Article CAS PubMed Google Scholar
Mota RR, Guimarães SEF, Fortes MRS, Hayes B, Silva FF, Verardo LL, S M et al (2017) Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. J Anim Breed Genet 134(6):484–492. https://doi.org/10.1111/jbg.12299
Article CAS PubMed Google Scholar
Mulder HA (2016) Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions. Front Genet 7(OCT):1–11. https://doi.org/10.3389/fgene.2016.00178
Oliveira DP, Lourenco DAL, Tsuruta S, Misztal I, Santos DJA, de Araújo Neto FR, Tonhati H (2018) Reaction norm for yearling weight in beef cattle using single-step genomic evaluation1. J Anim Sci 96(1):27–34. https://doi.org/10.1093/jas/skx006
Article CAS PubMed PubMed Central Google Scholar
Poppi DP, Quigley SP, da Silva TACC, McLennan SR (2018) Challenges of beef cattle production from tropical pastures. Revista Brasileira de Zootecnia 47:e20160419. https://doi.org/10.1590/rbz4720160419
R Core Team (2022) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
Raymond B, Bouwman AC, Schrooten C, Duistermaat JH, Veerkamp RF (2018) Utility of whole - genome sequence data for across - breed genomic prediction. Genet Sel Evol 1–12:1. https://doi.org/10.1186/s12711-018-0396-8
Sahana G, Cai Z, Sanchez MP, Bouwman AC, Boichard D (2023) Invited review: good practices in genome-wide association studies to identify candidate sequence variants in dairy cattle. J Dairy Sci 106(8):5218–5241. https://doi.org/10.3168/jds.2022-22694
Article CAS PubMed Google Scholar
Santure AW, Stapley J, Ball AD, Birkhead TR, Burke T, Slate J (2010) On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Mol Ecol 19(7):1439–1451. https://doi.org/10.1111/j.1365-294X.2010.04554.x
Sargolzaei M, Chesnais JP, Schenkel FS (2014) A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15(1):478. https://doi.org/10.1186/1471-2164-15-478
Comments (0)