Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol. 2020;10:190290.
Article CAS PubMed PubMed Central Google Scholar
Nozaki M, Ohishi K, Yamada N, Kinoshita T, Nagy A, Takeda J. Developmental abnormalities of glycosylphosphatidylinositol-anchor-deficient embryos revealed by Cre/loxP system. Lab Invest. 1999;79:293–9.
Lefeber DJ, Freeze HH, Steet R, Kinoshita T. Congenital disorders of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 4th ed. New York: Cold Spring Harbor, 2022. p. 599–614.
Lu T, Umeshita, S, Imanishi, K, Wang, Y, Liu, YS, Nagae, M, et al. ARV1 is a component of the enzyme initiating glycosylphosphatidylinositol biosynthesis. J Biol Chem. 2025;301:110236.
Vetting MW, Frantom PA, Blanchard JS. Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis. J Biol Chem. 2008;283:15834–44.
Article CAS PubMed PubMed Central Google Scholar
Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, Hino J, et al. Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J. 2000;19:4402–11.
Article CAS PubMed PubMed Central Google Scholar
Liu YS, Wang Y, Zhou X, Zhang L, Yang G, Gao XD, et al. Accumulated precursors of specific GPI-anchored proteins upregulate GPI biosynthesis with ARV1. J Cell Biol. 2023;222:e202208159.
Wang Y, Menon AK, Maki Y, Liu YS, Iwasaki Y, Fujita M, et al. Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Proc Natl Acad Sci USA. 2022;119:e2115083119.
Article CAS PubMed PubMed Central Google Scholar
Murakami Y, Siripanyapinyo U, Hong Y, Kang JY, Ishihara S, Nakakuma H, et al. PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor. Mol Biol Cell. 2003;14:4285–95.
Article CAS PubMed PubMed Central Google Scholar
Houjou T, Hayakawa J, Watanabe R, Tashima Y, Maeda Y, Kinoshita T, et al. Changes in molecular species profiles of glycosylphosphatidylinositol anchor precursors in early stages of biosynthesis. J Lipid Res. 2007;48:1599–606.
Article CAS PubMed Google Scholar
Maeda Y, Watanabe R, Harris CL, Hong Y, Ohishi K, Kinoshita K, et al. PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 2001;20:250–61.
Article CAS PubMed PubMed Central Google Scholar
Ashida H, Hong Y, Murakami Y, Shishioh N, Sugimoto N, Kim YU, et al. Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol Biol Cell. 2005;16:1439–48.
Article CAS PubMed PubMed Central Google Scholar
Kang JY, Hong Y, Ashida H, Shishioh N, Murakami Y, Morita YS, et al. PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J Biol Chem. 2005;280:9489–97.
Article CAS PubMed Google Scholar
Takahashi M, Inoue N, Ohishi K, Maeda Y, Nakamura N, Endo Y, et al. PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J. 1996;15:4254–61.
Article CAS PubMed PubMed Central Google Scholar
Ohishi K, Nagamune K, Maeda Y, Kinoshita T. Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfide bridge. J Biol Chem. 2003;278:13959–67.
Article CAS PubMed Google Scholar
Hong Y, Ohishi K, Kang JY, Tanaka S, Inoue N, Nishimura J, et al. Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol Biol Cell. 2003;14:1780–9.
Article CAS PubMed PubMed Central Google Scholar
Gerber LD, Kodukula K, Udenfriend S. Phosphatidylinositol glycan (PI-G) anchored membrane proteins. J Biol Chem. 1992;267:12168–73.
Article CAS PubMed Google Scholar
Humphreys IR, Pei J, Baek M, Krishnakumar A, Anishchenko I, Ovchinnikov S, et al. Computed structures of core eukaryotic protein complexes. Science. 2021;374:eabm4805.
Article CAS PubMed PubMed Central Google Scholar
Xu Y, Jia G, Li T, Zhou Z, Luo Y, Chao Y, et al. Molecular insights into biogenesis of glycosylphosphatidylinositol anchor proteins. Nat Commun. 2022;13:2617.
Article CAS PubMed PubMed Central Google Scholar
Xu Y, Li T, Zhou Z, Hong J, Chao Y, Zhu Z, et al. Structures of liganded glycosylphosphatidylinositol transamidase illuminate GPI-AP biogenesis. Nat Commun. 2023;14:5520.
Article CAS PubMed PubMed Central Google Scholar
Tanaka S, Maeda Y, Tashima Y, Kinoshita T. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem. 2004;279:14256–63.
Article CAS PubMed Google Scholar
Park S, Lee C, Sabharwal P, Zhang M, Meyers CL, Sockanathan S. GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK. Science. 2013;339:324–8.
Article CAS PubMed PubMed Central Google Scholar
van Veen M, Matas-Rico E, van de Wetering K, Leyton-Puig D, Kedziora KM, De Lorenzi V, et al. Negative regulation of urokinase receptor activity by a GPI-specific phospholipase C in breast cancer cells. Elife. 2017;6:e23649.
Lee GH, Fujita M, Takaoka K, Murakami Y, Fujihara Y, Kanzawa N, et al. A GPI processing phospholipase A2, PGAP6, modulates nodal signaling in embryos by shedding CRIPTO. J Cell Biol. 2016;215:705–18.
Article CAS PubMed PubMed Central Google Scholar
Hong J, Li T, Chao Y, Xu Y, Zhu Z, Zhou Z, et al. Molecular basis of the inositol deacylase PGAP1 involved in quality control of GPI-AP biogenesis. Nat Commun. 2024;15:8.
Article PubMed PubMed Central Google Scholar
Fujita M, Maeda Y, Ra M, Yamaguchi Y, Taguchi R, Kinoshita T. GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell. 2009;139:352–65.
Article CAS PubMed Google Scholar
Maeda Y, Tashima Y, Houjou T, Fujita M, Yoko-o T, Jigami Y, et al. Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol Biol Cell. 2007;18:1497–506.
Article CAS PubMed PubMed Central Google Scholar
Tashima Y, Taguchi R, Murata C, Ashida H, Kinoshita T, Maeda Y. PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol Biol Cell. 2006;17:1410–20.
Article CAS PubMed PubMed Central Google Scholar
Hirata T, Mishra SK, Nakamura S, Saito K, Motooka D, Takada Y, et al. Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nat Commun. 2018;9:405.
Article PubMed PubMed Central Google Scholar
Wang Y, Maeda Y, Liu YS, Takada Y, Ninomiya A, Hirata T, et al. Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation. Nat Commun. 2020;11:860.
Article CAS PubMed PubMed Central Google Scholar
Takeda J, Miyata T, Kawagoe K, Iida Y, Endo Y, Fujita T, et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell. 1993;73:703–11.
Article CAS PubMed Google Scholar
Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, et al. Cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science. 1993;259:1318–20.
Comments (0)