Morton CC, Nance WE. Newborn Hearing Screening - a Silent Revolution. New Engl J Med. 2006;354:2151–64. https://doi.org/10.1056/NEJMra050700.
Article CAS PubMed Google Scholar
Del Castillo I, Morín M, Domínguez-Ruiz M, Moreno-Pelayo MA. Genetic Etiology of Non-Syndromic Hearing Loss in Europe. Hum Genet. 2022;141:683–96. https://doi.org/10.1007/s00439-021-02425-6.
Article CAS PubMed Google Scholar
Del Castillo FJ, Del Castillo I DFNB1 Non-Syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front Mol Neurosci: 2017, 10; https://doi.org/10.3389/fnmol.2017.00428.
Smith RJH, Azaiez H, Booth K. GJB2-Related Autosomal Recessive Nonsyndromic Hearing Loss. 1998 Sep 28 In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024
Mignon C, Fromaget C, Mattei MG, Gros D, Yamasaki H, Mesnil M. Assignment of connexin 26 (GJB2) and 46 (GJA3) genes to human chromosomes 13q11-q12 and mouse chromosome 14D1-E1 by in situ hybridization. Cytogenet Cell Genet. 1996;72:185–6. https://doi.org/10.1159/000134183.
Article CAS PubMed Google Scholar
Kikuchi T, Kimura R, Paul DL, Adams JC. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol. 1995, 191; https://doi.org/10.1007/BF00186783.
Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997;387:80–83. https://doi.org/10.1038/387080a0.
Article CAS PubMed Google Scholar
Chan DK, Chang KW. GJB2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope. 2014;124:E34–E53. https://doi.org/10.1002/lary.24332.
Adadey SM, Wonkam-Tingang E, Twumasi Aboagye E, Nayo-Gyan DW, Boatemaa Ansong M, Quaye O, et al. Connexin Genes Variants Associated with Non-Syndromic Hearing Impairment: A Systematic Review of the Global Burden. Life. 2020;10:258. https://doi.org/10.3390/life10110258.
Article CAS PubMed PubMed Central Google Scholar
Snoeckx RL, Djelantik B, Van Laer L, Van de Heyning P, Van Camp G. GJB2 (connexin 26) mutations are not a major cause of hearing loss in the Indonesian population. Am J Med Genet A. 2005;135A:126–9. https://doi.org/10.1002/ajmg.a.30726.
Zainal SA, Md Daud MK, Abd Rahman N, Zainuddin Z, Alwi Z. Mutation detection in GJB2 gene among Malays with non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol. 2012;76:1175–9. https://doi.org/10.1016/j.ijporl.2012.04.027.
Yuan Y, Zhang X, Huang S, Zuo L, Zhang G, Song Y, et al. Common molecular etiologies are rare in nonsyndromic Tibetan Chinese patients with hearing impairment. PLoS ONE. 2012;7:30720 https://doi.org/10.1371/journal.pone.0030720.
Yang XL, Bai-Cheng X, Chen XJ, Pan-Pan B, Jian-Li M, Xiao-Wen L, et al. Common molecular etiology of patients with nonsyndromic hearing loss in Tibetan, Tu nationality, and Mongolian patients in the northwest of China. Acta Otolaryngol. 2013;133:930–4. https://doi.org/10.3109/00016489.2013.795288.
Article CAS PubMed Google Scholar
Erdenechuluun J, Lin YH, Ganbat K, Bataakhuu D, Makhbal Z, Tsai CY, et al. Unique spectra of deafness-associated mutations in Mongolians provide insights into the genetic relationships among Eurasian populations. PLoS ONE. 2018;13:e0209797. https://doi.org/10.1371/journal.pone.0209797.
Article CAS PubMed PubMed Central Google Scholar
Pshennikova VG, Teryutin FM, Cherdonova AM, Borisova TV, Solovyev AV, Romanov GP, et al. The GJB2 (Cx26) Gene Variants in Patients with Hearing Impairment in the Baikal Lake Region (Russia). Genes. 2023;14:1001. https://doi.org/10.3390/genes14051001.
Article CAS PubMed PubMed Central Google Scholar
Adadey SM, Wonkam-Tingang E, Aboagye ET, Quaye O, Awandare GA, Wonkam A. Hearing loss in Africa: current genetic profile. Hum Genet. 2022;141:505–17. https://doi.org/10.1007/s00439-021-02376-y.
Article CAS PubMed Google Scholar
Dia Y, Adadey SM, Diop JPD, Aboagye ET, Ba SA, De Kock C, et al. GJB2 Is a Major Cause of Non-Syndromic Hearing Impairment in Senegal. Biology. 2022;11:795. https://doi.org/10.3390/biology11050795.
Article CAS PubMed PubMed Central Google Scholar
Barashkov NA, Dzhemileva LU, Fedorova SA, Teryutin FM, Posukh OL, Fedotova EE, et al. Autosomal recessive deafness 1A (DFNB1A) in Yakut population isolate in Eastern Siberia: Extensive accumulation of the splice site mutation IVS1+1G>A in GJB2 gene as a result of founder effect. J Hum Genet. 2011;56:631–9.
Article CAS PubMed Google Scholar
Solovyev AV, Kushniarevich A, Bliznetz E, Bady-Khoo M, Lalayants MR, Markova TG, et al. A common founder effect of the splice site variant c.-23 + 1G > A in GJB2 gene causing autosomal recessive deafness 1A (DFNB1A) in Eurasia. Hum Genet. 2022;141:697–707. https://doi.org/10.1007/s00439-021-02405-w.
Article CAS PubMed Google Scholar
Teryutin FM, Pshennikova VG, Solovyev AV, Romanov GP, Fedorova SA, Barashkov NA. Genotype-phenotype analysis of hearing function in patients with DFNB1A caused by the c.-23+1G>A splice site variant of the GJB2 gene (Cx26). PLoS ONE. 2024;19:0309439. https://doi.org/10.1371/journal.pone.0309439.
Barashkov NA, Pshennikova VG, Posukh OL, Teryutin FM, Solovyev AV, Klarov LA, et al. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic). PLoS ONE. 2016;11:e0156300. https://doi.org/10.1371/journal.pone.0156300.
Article CAS PubMed PubMed Central Google Scholar
Romanov GP, Barashkov NA, Teryutin FM, Lashin SA, Solovyev AV, Pshennikova VG, et al. Marital Structure, Genetic Fitness, and the GJB2 Gene Mutations among Deaf People in Yakutia (Eastern Siberia, Russia). Russian J Genet. 2018;54:554–61. https://doi.org/10.1134/S1022795418050071.
Clark JG. Uses and abuses of HL classification. ASHA. 1981;23:493–500.
Fedorova SA, Popova SA, Mordosova ML, Starostina MI. Generation length in the Yakut population in the XVIII-XIX centuries. Yakut Med J. 2023;83:21–24. https://doi.org/10.25789/YMJ.2023.83.05.
Gagnon LH, Longo-Guess CM, Berryman M, Shin JB, Saylor KW, Yu H, et al. The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J Neurosci. 2006;26:10188–98. https://doi.org/10.1523/JNEUROSCI.2166-06.2006.
Article CAS PubMed PubMed Central Google Scholar
Seco CZ, Oonk AM, Domínguez-Ruiz M, Draaisma JM, Gandía M, Oostrik J, et al. Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5. Eur J Hum Genet. 2015;23:189–94. https://doi.org/10.1038/ejhg.2014.83.
Article CAS PubMed Google Scholar
Wonkam-Tingang E, Schrauwen I, Esoh KK, Bharadwaj T, Nouel-Saied LM, Acharya A, et al. Bi-Allelic Novel Variants in CLIC5 Identified in a Cameroonian Multiplex Family with Non-Syndromic Hearing Impairment. Genes. 2020;11:1249. https://doi.org/10.3390/genes11111249.
Article CAS PubMed PubMed Central Google Scholar
Adadey SM, Wonkam-Tingang E, Alves de Souza Rios L, Aboagye ET, Esoh K, Manyisa N, et al. Cell-based analysis of CLIC5A and SLC12A2 variants associated with hearing impairment in two African families. Front Genet. 2022, 13; https://doi.org/10.3389/fgene.2022.924904.
Comments (0)