The c.644 G > A p.(Trp215*) founder variant in the CLIC5 gene causes progressive autosomal recessive deafness 103 (DFNB103) in Eastern Siberia

Morton CC, Nance WE. Newborn Hearing Screening - a Silent Revolution. New Engl J Med. 2006;354:2151–64. https://doi.org/10.1056/NEJMra050700.

Article  CAS  PubMed  Google Scholar 

Del Castillo I, Morín M, Domínguez-Ruiz M, Moreno-Pelayo MA. Genetic Etiology of Non-Syndromic Hearing Loss in Europe. Hum Genet. 2022;141:683–96. https://doi.org/10.1007/s00439-021-02425-6.

Article  CAS  PubMed  Google Scholar 

Del Castillo FJ, Del Castillo I DFNB1 Non-Syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front Mol Neurosci: 2017, 10; https://doi.org/10.3389/fnmol.2017.00428.

Smith RJH, Azaiez H, Booth K. GJB2-Related Autosomal Recessive Nonsyndromic Hearing Loss. 1998 Sep 28 In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024

Mignon C, Fromaget C, Mattei MG, Gros D, Yamasaki H, Mesnil M. Assignment of connexin 26 (GJB2) and 46 (GJA3) genes to human chromosomes 13q11-q12 and mouse chromosome 14D1-E1 by in situ hybridization. Cytogenet Cell Genet. 1996;72:185–6. https://doi.org/10.1159/000134183.

Article  CAS  PubMed  Google Scholar 

Kikuchi T, Kimura R, Paul DL, Adams JC. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol. 1995, 191; https://doi.org/10.1007/BF00186783.

Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997;387:80–83. https://doi.org/10.1038/387080a0.

Article  CAS  PubMed  Google Scholar 

Chan DK, Chang KW. GJB2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope. 2014;124:E34–E53. https://doi.org/10.1002/lary.24332.

Article  PubMed  Google Scholar 

Adadey SM, Wonkam-Tingang E, Twumasi Aboagye E, Nayo-Gyan DW, Boatemaa Ansong M, Quaye O, et al. Connexin Genes Variants Associated with Non-Syndromic Hearing Impairment: A Systematic Review of the Global Burden. Life. 2020;10:258. https://doi.org/10.3390/life10110258.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Snoeckx RL, Djelantik B, Van Laer L, Van de Heyning P, Van Camp G. GJB2 (connexin 26) mutations are not a major cause of hearing loss in the Indonesian population. Am J Med Genet A. 2005;135A:126–9. https://doi.org/10.1002/ajmg.a.30726.

Article  Google Scholar 

Zainal SA, Md Daud MK, Abd Rahman N, Zainuddin Z, Alwi Z. Mutation detection in GJB2 gene among Malays with non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol. 2012;76:1175–9. https://doi.org/10.1016/j.ijporl.2012.04.027.

Article  PubMed  Google Scholar 

Yuan Y, Zhang X, Huang S, Zuo L, Zhang G, Song Y, et al. Common molecular etiologies are rare in nonsyndromic Tibetan Chinese patients with hearing impairment. PLoS ONE. 2012;7:30720 https://doi.org/10.1371/journal.pone.0030720.

Article  CAS  Google Scholar 

Yang XL, Bai-Cheng X, Chen XJ, Pan-Pan B, Jian-Li M, Xiao-Wen L, et al. Common molecular etiology of patients with nonsyndromic hearing loss in Tibetan, Tu nationality, and Mongolian patients in the northwest of China. Acta Otolaryngol. 2013;133:930–4. https://doi.org/10.3109/00016489.2013.795288.

Article  CAS  PubMed  Google Scholar 

Erdenechuluun J, Lin YH, Ganbat K, Bataakhuu D, Makhbal Z, Tsai CY, et al. Unique spectra of deafness-associated mutations in Mongolians provide insights into the genetic relationships among Eurasian populations. PLoS ONE. 2018;13:e0209797. https://doi.org/10.1371/journal.pone.0209797.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pshennikova VG, Teryutin FM, Cherdonova AM, Borisova TV, Solovyev AV, Romanov GP, et al. The GJB2 (Cx26) Gene Variants in Patients with Hearing Impairment in the Baikal Lake Region (Russia). Genes. 2023;14:1001. https://doi.org/10.3390/genes14051001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adadey SM, Wonkam-Tingang E, Aboagye ET, Quaye O, Awandare GA, Wonkam A. Hearing loss in Africa: current genetic profile. Hum Genet. 2022;141:505–17. https://doi.org/10.1007/s00439-021-02376-y.

Article  CAS  PubMed  Google Scholar 

Dia Y, Adadey SM, Diop JPD, Aboagye ET, Ba SA, De Kock C, et al. GJB2 Is a Major Cause of Non-Syndromic Hearing Impairment in Senegal. Biology. 2022;11:795. https://doi.org/10.3390/biology11050795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barashkov NA, Dzhemileva LU, Fedorova SA, Teryutin FM, Posukh OL, Fedotova EE, et al. Autosomal recessive deafness 1A (DFNB1A) in Yakut population isolate in Eastern Siberia: Extensive accumulation of the splice site mutation IVS1+1G>A in GJB2 gene as a result of founder effect. J Hum Genet. 2011;56:631–9.

Article  CAS  PubMed  Google Scholar 

Solovyev AV, Kushniarevich A, Bliznetz E, Bady-Khoo M, Lalayants MR, Markova TG, et al. A common founder effect of the splice site variant c.-23 + 1G > A in GJB2 gene causing autosomal recessive deafness 1A (DFNB1A) in Eurasia. Hum Genet. 2022;141:697–707. https://doi.org/10.1007/s00439-021-02405-w.

Article  CAS  PubMed  Google Scholar 

Teryutin FM, Pshennikova VG, Solovyev AV, Romanov GP, Fedorova SA, Barashkov NA. Genotype-phenotype analysis of hearing function in patients with DFNB1A caused by the c.-23+1G>A splice site variant of the GJB2 gene (Cx26). PLoS ONE. 2024;19:0309439. https://doi.org/10.1371/journal.pone.0309439.

Article  CAS  Google Scholar 

Barashkov NA, Pshennikova VG, Posukh OL, Teryutin FM, Solovyev AV, Klarov LA, et al. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic). PLoS ONE. 2016;11:e0156300. https://doi.org/10.1371/journal.pone.0156300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romanov GP, Barashkov NA, Teryutin FM, Lashin SA, Solovyev AV, Pshennikova VG, et al. Marital Structure, Genetic Fitness, and the GJB2 Gene Mutations among Deaf People in Yakutia (Eastern Siberia, Russia). Russian J Genet. 2018;54:554–61. https://doi.org/10.1134/S1022795418050071.

Article  CAS  Google Scholar 

Clark JG. Uses and abuses of HL classification. ASHA. 1981;23:493–500.

CAS  PubMed  Google Scholar 

Fedorova SA, Popova SA, Mordosova ML, Starostina MI. Generation length in the Yakut population in the XVIII-XIX centuries. Yakut Med J. 2023;83:21–24. https://doi.org/10.25789/YMJ.2023.83.05.

Article  Google Scholar 

Gagnon LH, Longo-Guess CM, Berryman M, Shin JB, Saylor KW, Yu H, et al. The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J Neurosci. 2006;26:10188–98. https://doi.org/10.1523/JNEUROSCI.2166-06.2006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seco CZ, Oonk AM, Domínguez-Ruiz M, Draaisma JM, Gandía M, Oostrik J, et al. Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5. Eur J Hum Genet. 2015;23:189–94. https://doi.org/10.1038/ejhg.2014.83.

Article  CAS  PubMed  Google Scholar 

Wonkam-Tingang E, Schrauwen I, Esoh KK, Bharadwaj T, Nouel-Saied LM, Acharya A, et al. Bi-Allelic Novel Variants in CLIC5 Identified in a Cameroonian Multiplex Family with Non-Syndromic Hearing Impairment. Genes. 2020;11:1249. https://doi.org/10.3390/genes11111249.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adadey SM, Wonkam-Tingang E, Alves de Souza Rios L, Aboagye ET, Esoh K, Manyisa N, et al. Cell-based analysis of CLIC5A and SLC12A2 variants associated with hearing impairment in two African families. Front Genet. 2022, 13; https://doi.org/10.3389/fgene.2022.924904.

Comments (0)

No login
gif