The effect of divergent selection on the basal metabolic rate on body temperature in males of laboratory mice with different levels of obesity

Withers PC, Cooper CE, Maloney SK, Bozinovic F, Cruz-Neto AP. Ecological and environmental physiology of mammals. Oxford: Oxford University Press; 2016.

Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med. 1988;318:467–72.

Article  PubMed  CAS  Google Scholar 

Hohenadel MG, Hollstein T, Thearle M, Reinhardt M, Piaggi P, Salbe AD, et al. A low resting metabolic rate in late childhood is associated with weight gain in adolescence. Metabolism. 2019;93:68–74.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Speakman JR, de Jong JMA, Sinha S, Westerterp KR, Yamada Y, Sagayama H, et al. Total daily energy expenditure has declined over the past three decades due to declining basal expenditure, not reduced activity expenditure. Nat Metab. 2023;5:579–88.

Article  PubMed  PubMed Central  Google Scholar 

Landsberg L, Young JB, Leonard WR, Linsenmeier RA, Turek FW. Is obesity associated with lower body temperatures? Core temperature: a forgotten variable in energy balance. Metab Clin Exp. 2009;58:871–6.

Article  PubMed  CAS  Google Scholar 

Dulloo AG, Schutz Y. Adaptive thermogenesis in resistance to obesity therapies: issues in quantifying thrifty energy expenditure phenotypes in humans. Curr Obes Rep. 2015;4:230–40.

Article  PubMed  Google Scholar 

Reinhardt M, Schlögl M, Bonfiglio S, Votruba SB, Krakoff J, Thearle MS. Lower core body temperature and greater body fat are components of a human thrifty phenotype. Int J Obes. 2016;40:754–60.

Article  CAS  Google Scholar 

Clarke A, Rothery P, Isaac NJ. Scaling of basal metabolic rate with body mass and temperature in mammals. J Anim Ecol. 2010;79:610–9.

Article  PubMed  Google Scholar 

Uyeda JC, Bone N, McHugh S, Rolland J, Pennell MW. How should functional relationships be evaluated using phylogenetic comparative methods? A case study using metabolic rate and body temperature. Evolution. 2021;75:1097–105.

Article  PubMed  Google Scholar 

Rising R, Keys A, Ravussin E, Bogardus C. Concomitant interindividual variation in body temperature and metabolic rate. Am J Physiol. 1992;263:E730–4.

PubMed  CAS  Google Scholar 

Willershäuser M, Ehrhardt N, Elvert R, Wirth EK, Schweizer U, Gailus-Durner V, et al. Systematic screening for mutant mouse lines with defects in body temperature regulation. In: Ruf T, Bieber C, Arnold W, Millesi E, editors. Living in a seasonal world. Berlin Heidelberg: Springer-Verlag; 2012. pp. 459–69.

Piaggi P. Metabolic determinants of weight gain in humans. Obesity. 2019;27:691–9.

Article  PubMed  Google Scholar 

Hollstein T, Heinitz S, Ando T, Rodzevik TL, Basolo A, Walter M, et al. Metabolic responses to 24-hour fasting and mild cold exposure in overweight individuals are correlated and accompanied by changes in FGF21 concentration. Diabetes. 2020;69:1382–8.

Article  PubMed  PubMed Central  Google Scholar 

Boratyński JS, Szafrańska PA. Does basal metabolism set the limit for metabolic downregulation during torpor?. Physiol Biochem Zool. 2018;91:1057–67.

Article  PubMed  Google Scholar 

Gordon CJ. The mouse: an “average” endotherm. J Therm Biol. 2012;37:286–90.

Article  Google Scholar 

Gordon CJ. Thermal physiology of laboratory mice: defining thermoneutrality. J Therm Biol. 2012;37:654–85.

Article  Google Scholar 

Gordon CJ. The mouse thermoregulatory system: its impact on translating biomedical data to humans. Physiol Behav. 2017;179:55–66.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhao Z, Yang R, Li M, Bao M, Huo D, Cao J, et al. Effects of ambient temperatures between 5 and 35 °C on energy balance, body mass and body composition in mice. Mol Metab. 2022;64:101551.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Reitman ML. Of mice and men – environmental temperature, body temperature, and treatment of obesity. FEBS Lett. 2018;592:2098–107.

Article  PubMed  CAS  Google Scholar 

Książek A, Konarzewski M, Łapo IB. Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiol Biochem Zool. 2004;77:890–9.

Article  PubMed  Google Scholar 

Gębczyński AK, Konarzewski M. Locomotor activity of mice divergently selected for basal metabolic rate: a test of hypotheses on the evolution of endothermy. J Exp Biol. 2009;22:1212–20.

Google Scholar 

Gębczyński AK, Sadowska J, Konarzewski M. Differences in the range of thermoneutral zone between mouse strains: potential effects on translational research. Am J Physiol Regul Integr Comp Physiol. 2024;326:R91–9.

Article  PubMed  Google Scholar 

Garland T Jr, Rose MR. Experimental evolution. Concepts, methods and applications of selection experiments. Berkeley and Los Angeles: University of California Press; 2009.

Brzęk P, Gębczyński A, Selewestruk P, Książek A, Sadowska J, Konarzewski M. Significance of variation in basal metabolic rate in laboratory mice for translational experiments. J Comp Physiol B. 2022;192:161–9.

Article  PubMed  Google Scholar 

Brzęk P, Selewestruk P, Sadowska J, Gębczyński AK, Książek A, Kalinovich A, et al. Divergent selection for basal metabolic rate in laboratory mice affects the abundance of UCP1 protein: implications for translational studies. J Physiol. 2025;603:319–36.

Article  PubMed  Google Scholar 

Brzęk P, Książek A, Dobrzyń A, Konarzewski M. Effect of dietary restriction on metabolic, anatomic and molecular traits in mice depends on the initial level of basal metabolic rate. J Exp Biol. 2012;215:3191–9.

PubMed  Google Scholar 

Sadowska J, Gębczyński AK, Konarzewski M. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets. PLoS ONE. 2017;12:e0172892.

Article  PubMed  PubMed Central  Google Scholar 

Gębczyński AK. Nonshivering thermogenesis capacity versus basal metabolic rate in laboratory mice. J Therm Biol. 2008;33:250–4.

Article  Google Scholar 

Henderson ND. Interpreting studies that compare high- and low-selected lines on new characters. Behav Genet. 1989;19:473–502.

Article  PubMed  CAS  Google Scholar 

Henderson ND. Spurious associations in unreplicated selected lines. Behav Genet. 1997;27:145–54.

Article  PubMed  CAS  Google Scholar 

Konarzewski M, Książek A, Łapo IB. Artificial selection on metabolic rates and related traits in rodents. Integr Comp Biol. 2005;45:416–25.

Article  PubMed  Google Scholar 

Brzęk P, Roussel D, Konarzewski M. Mice selected for a high basal metabolic rate evolved larger guts but not more efficient mitochondria. Proc R Soc B. 2022;289:20220719.

Article  PubMed  PubMed Central  Google Scholar 

Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Essex: Lognman;1996.

Connolly MS, Lynch CB. Circadian variation of strain differences in body temperature and activity in mice. Physiol Behav. 1981;27:1045–9.

Article  PubMed  CAS  Google Scholar 

Connolly MS, Lynch CB. Classical genetic analysis of circadian body temperature rhythms in mice. Behav Genet. 1983;13:491–500.

Article  PubMed  CAS  Google Scholar 

Lynch CB, Sulzbach DS. Quantitative genetic analysis of temperature regulation in Mus musculus. II. Diallel analysis of individual traits. Evolution. 1983;38:527–40.

Google Scholar 

Lynch CB, Sulzbach DS, Connolly MS. Quantitative-genetic analysis of temperature regulation in Mus domesticus. IV. Pleiotropy and genotype-by-environment interactions. Am Nat. 1988;132:521–37.

Article  Google Scholar 

Landsberg L. Core temperature: a forgotten variable in energy expenditure and obesity?. Obes Rev. 2012;13:S97–S104.

Article  Google Scholar 

Abreu-Vieira G, Xiao C, Gavrilova O, Reitman ML. Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metab. 2015;4:461–70.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif