Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49. https://doi.org/10.3322/caac.21820.
Colombo N, Sessa C, du Bois A, Ledermann J, McCluggage WG, McNeish I, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease†. Ann Oncol. 2019;30:672–705. https://doi.org/10.1093/annonc/mdz062.
Article CAS PubMed Google Scholar
Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–96. https://doi.org/10.1056/NEJMoa1103799.
Article CAS PubMed Google Scholar
Tewari KS, Burger RA, Enserro D, Norquist BM, Swisher EM, Brady MF, et al. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J Clin Oncol. 2019;37:2317–28. https://doi.org/10.1200/JCO.19.01009.
Article CAS PubMed PubMed Central Google Scholar
Yildirim HC, Anik H, Ozdemir DA, Ismayilov R, Akyildiz A, Cayiroz K, et al. Effect of hypoxia-inducible factor-1 alpha expression on survival in patients with metastatic cervical squamous cell carcinoma treated with first-line chemotherapy and bevacizumab. Biomol Biomed. 2024;24:998–1003. https://doi.org/10.17305/bb.2024.10255.
Article CAS PubMed PubMed Central Google Scholar
Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.
Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the National center for biotechnology information. Nucleic Acids Res. 2022;50:D20–6. https://doi.org/10.1093/nar/gkab1112.
Article CAS PubMed Google Scholar
Ji Y, Walkowicz MJ, Buiting K, Johnson DK, Tarvin RE, Rinchik EM, et al. The ancestral gene for transcribed, low-copy repeats in the Prader-Willi/Angelman region encodes a large protein implicated in protein trafficking, which is deficient in mice with neuromuscular and spermiogenic abnormalities. Hum Mol Genet. 1999;8:533–42. https://doi.org/10.1093/hmg/8.3.533.
Article CAS PubMed Google Scholar
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 2024;9:1–30. https://doi.org/10.1038/s41392-024-01769-5.
Guo K, Lu M, Bi J, Yao T, Gao J, Ren F, et al. Ferroptosis: mechanism, immunotherapy and role in ovarian cancer. Front Immunol. 2024. https://doi.org/10.3389/fimmu.2024.1410018.
Article PubMed PubMed Central Google Scholar
Anandhan A, Dodson M, Shakya A, Chen J, Liu P, Wei Y, et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci Adv. 2023;9:eade9585. https://doi.org/10.1126/sciadv.ade9585.
Article CAS PubMed PubMed Central Google Scholar
Okon IS, Coughlan KA, Zhang C, Moriasi C, Ding Y, Song P, et al. Protein kinase LKB1 promotes RAB7-mediated neuropilin-1 degradation to inhibit angiogenesis. J Clin Invest. 2014;124:4590–602. https://doi.org/10.1172/JCI75371.
Article CAS PubMed PubMed Central Google Scholar
Bai B, Man AWC, Yang K, Guo Y, Xu C, Tse H-F, et al. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget. 2016;7:39065–81. https://doi.org/10.18632/oncotarget.9687.
Article PubMed PubMed Central Google Scholar
Wang Y, Bai B, Liang Y, Li J, Xu A, Vanhoutte PM. HERC2 as an E3 ligase mediating SIRT1-induced LKB1 degradation in endothelial cells: implication in endothelial senescence. J Vasc Res. 2013. https://doi.org/10.1159/000355626.
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8. https://doi.org/10.1038/s41587-020-0546-8.
Article CAS PubMed PubMed Central Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.
Article CAS PubMed PubMed Central Google Scholar
Thangudu RR, Holck M, Singhal D, Pilozzi A, Edwards N, Rudnick PA, et al. NCI’s proteomic data commons: a cloud-based proteomics repository empowering comprehensive cancer analysis through cross-referencing with genomic and imaging data. Cancer Res Commun. 2024;4:2480–8. https://doi.org/10.1158/2767-9764.CRC-24-0243.
Article PubMed PubMed Central Google Scholar
Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27. https://doi.org/10.1016/j.neo.2022.01.001.
Article CAS PubMed PubMed Central Google Scholar
Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14:5637. https://doi.org/10.1038/s41467-023-41374-8.
Article CAS PubMed PubMed Central Google Scholar
Bartha Á, Győrffy B. TNMplot.com: a web tool for the comparison of gene expression in Normal, tumor and metastatic tissues. Int J Mol Sci. 2021;22:2622. https://doi.org/10.3390/ijms22052622.
Article CAS PubMed PubMed Central Google Scholar
Győrffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. GeroScience. 2023;45:1889–98. https://doi.org/10.1007/s11357-023-00742-4.
Article CAS PubMed PubMed Central Google Scholar
Győrffy B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation (Camb). 2024;5:100625. https://doi.org/10.1016/j.xinn.2024.100625.
Article CAS PubMed Google Scholar
Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23:e27633. https://doi.org/10.2196/27633.
Article PubMed PubMed Central Google Scholar
Li Q, Birkbak NJ, Gyorffy B, Szallasi Z, Eklund AC. Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics. 2011;12:474. https://doi.org/10.1186/1471-2105-12-474.
Article PubMed PubMed Central Google Scholar
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server for comprehensive analysis of Tumor-Infiltrating immune cells. Cancer Res. 2017;77:e108–10. https://doi.org/10.1158/0008-5472.CAN-17-0307.
Article CAS PubMed PubMed Central Google Scholar
Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–14. https://doi.org/10.1093/nar/gkaa407.
Article CAS PubMed PubMed Central Google Scholar
Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60. https://doi.org/10.1093/nar/gkz430.
Comments (0)