as a Potential Biomarker for Prognosis and Response to Bevacizumab in Ovarian Cancer: A Bioinformatics Approach

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49. https://doi.org/10.3322/caac.21820.

Article  PubMed  Google Scholar 

Colombo N, Sessa C, du Bois A, Ledermann J, McCluggage WG, McNeish I, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease†. Ann Oncol. 2019;30:672–705. https://doi.org/10.1093/annonc/mdz062.

Article  CAS  PubMed  Google Scholar 

Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–96. https://doi.org/10.1056/NEJMoa1103799.

Article  CAS  PubMed  Google Scholar 

Tewari KS, Burger RA, Enserro D, Norquist BM, Swisher EM, Brady MF, et al. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J Clin Oncol. 2019;37:2317–28. https://doi.org/10.1200/JCO.19.01009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yildirim HC, Anik H, Ozdemir DA, Ismayilov R, Akyildiz A, Cayiroz K, et al. Effect of hypoxia-inducible factor-1 alpha expression on survival in patients with metastatic cervical squamous cell carcinoma treated with first-line chemotherapy and bevacizumab. Biomol Biomed. 2024;24:998–1003. https://doi.org/10.17305/bb.2024.10255.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.

CAS  PubMed  Google Scholar 

Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the National center for biotechnology information. Nucleic Acids Res. 2022;50:D20–6. https://doi.org/10.1093/nar/gkab1112.

Article  CAS  PubMed  Google Scholar 

Ji Y, Walkowicz MJ, Buiting K, Johnson DK, Tarvin RE, Rinchik EM, et al. The ancestral gene for transcribed, low-copy repeats in the Prader-Willi/Angelman region encodes a large protein implicated in protein trafficking, which is deficient in mice with neuromuscular and spermiogenic abnormalities. Hum Mol Genet. 1999;8:533–42. https://doi.org/10.1093/hmg/8.3.533.

Article  CAS  PubMed  Google Scholar 

Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 2024;9:1–30. https://doi.org/10.1038/s41392-024-01769-5.

Article  Google Scholar 

Guo K, Lu M, Bi J, Yao T, Gao J, Ren F, et al. Ferroptosis: mechanism, immunotherapy and role in ovarian cancer. Front Immunol. 2024. https://doi.org/10.3389/fimmu.2024.1410018.

Article  PubMed  PubMed Central  Google Scholar 

Anandhan A, Dodson M, Shakya A, Chen J, Liu P, Wei Y, et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci Adv. 2023;9:eade9585. https://doi.org/10.1126/sciadv.ade9585.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okon IS, Coughlan KA, Zhang C, Moriasi C, Ding Y, Song P, et al. Protein kinase LKB1 promotes RAB7-mediated neuropilin-1 degradation to inhibit angiogenesis. J Clin Invest. 2014;124:4590–602. https://doi.org/10.1172/JCI75371.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai B, Man AWC, Yang K, Guo Y, Xu C, Tse H-F, et al. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget. 2016;7:39065–81. https://doi.org/10.18632/oncotarget.9687.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Bai B, Liang Y, Li J, Xu A, Vanhoutte PM. HERC2 as an E3 ligase mediating SIRT1-induced LKB1 degradation in endothelial cells: implication in endothelial senescence. J Vasc Res. 2013. https://doi.org/10.1159/000355626.

Article  PubMed  Google Scholar 

Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8. https://doi.org/10.1038/s41587-020-0546-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thangudu RR, Holck M, Singhal D, Pilozzi A, Edwards N, Rudnick PA, et al. NCI’s proteomic data commons: a cloud-based proteomics repository empowering comprehensive cancer analysis through cross-referencing with genomic and imaging data. Cancer Res Commun. 2024;4:2480–8. https://doi.org/10.1158/2767-9764.CRC-24-0243.

Article  PubMed  PubMed Central  Google Scholar 

Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27. https://doi.org/10.1016/j.neo.2022.01.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14:5637. https://doi.org/10.1038/s41467-023-41374-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartha Á, Győrffy B. TNMplot.com: a web tool for the comparison of gene expression in Normal, tumor and metastatic tissues. Int J Mol Sci. 2021;22:2622. https://doi.org/10.3390/ijms22052622.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Győrffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. GeroScience. 2023;45:1889–98. https://doi.org/10.1007/s11357-023-00742-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Győrffy B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation (Camb). 2024;5:100625. https://doi.org/10.1016/j.xinn.2024.100625.

Article  CAS  PubMed  Google Scholar 

Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23:e27633. https://doi.org/10.2196/27633.

Article  PubMed  PubMed Central  Google Scholar 

Li Q, Birkbak NJ, Gyorffy B, Szallasi Z, Eklund AC. Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics. 2011;12:474. https://doi.org/10.1186/1471-2105-12-474.

Article  PubMed  PubMed Central  Google Scholar 

Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server for comprehensive analysis of Tumor-Infiltrating immune cells. Cancer Res. 2017;77:e108–10. https://doi.org/10.1158/0008-5472.CAN-17-0307.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–14. https://doi.org/10.1093/nar/gkaa407.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60. https://doi.org/10.1093/nar/gkz430.

Article  CAS 

Comments (0)

No login
gif