Differential Methylation Signatures Associated with PCOS- A Systematic Review and In-Silico Analysis

Eiras MC, Pinheiro DP, Romcy KAM, Ferriani RA, Reis RMD, Furtado CLM. Polycystic ovary syndrome: the epigenetics behind the disease. Reprod Sci. 2022;29:680–94. https://doi.org/10.1007/s43032-021-00516-3.

Article  PubMed  Google Scholar 

Kujanpää L, Arffman RK, Pesonen P, Hurskainen E, Järvelin M-R, Franks S, et al. Polycystic ovary syndrome presents as a multimorbid condition by age 50: birth cohort linkage to national register data. Eur J Endocrinol. 2024;190:409–20. https://doi.org/10.1093/ejendo/lvae057.

Article  CAS  PubMed  Google Scholar 

Sharma P, Bilkhiwal N, Chaturvedi P, Kumar S, Khetarpal P. Potential environmental toxicant exposure, metabolizing gene variants and risk of PCOS-a systematic review. Reprod Toxicol. 2021;103:124–32. https://doi.org/10.1016/j.reprotox.2021.06.005.

Article  CAS  PubMed  Google Scholar 

Chaudhary H, Patel J, Jain NK, Joshi R. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J Ovarian Res. 2021;14:125. https://doi.org/10.1186/s13048-021-00879-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stener-Victorin E, Deng Q. Epigenetic inheritance of polycystic ovary syndrome — challenges and opportunities for treatment. Nat Rev Endocrinol. 2021;17:521–33. https://doi.org/10.1038/s41574-021-00517-x.

Article  PubMed  Google Scholar 

Combs JC, Hill MJ, Decherney AH. Polycystic ovarian syndrome genetics and epigenetics. Clin Obstet Gynecol. 2021;64:20–5. https://doi.org/10.1097/GRF.0000000000000581.

Article  PubMed  PubMed Central  Google Scholar 

Li S, Zhu D, Duan H, Ren A, Glintborg D, Andersen M, et al. Differential DNA methylation patterns of polycystic ovarian syndrome in whole blood of Chinese women. Oncotarget. 2017;8:20656–66. https://doi.org/10.18632/oncotarget.9327.

Article  PubMed  Google Scholar 

Vázquez-Martínez ER, Gómez-Viais YI, García-Gómez E, Reyes-Mayoral C, Reyes-Muñoz E, Camacho-Arroyo I, et al. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction. 2019;158:R27–40. https://doi.org/10.1530/REP-18-0449.

Article  PubMed  Google Scholar 

Loscalzo J, Handy DE. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference Series). Pulm Circ. 2014;4:169–74. https://doi.org/10.1086/675979.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao P, Yang W, Wang P, Li X, Nashun B. Characterization of DNA methylation and screening of epigenetic markers in polycystic ovary syndrome. Front Cell Dev Biol. 2021;9:664843. https://doi.org/10.3389/fcell.2021.664843.

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Xu Y, Liu H, Pan Z. Micrornas in ovarian follicular atresia and granulosa cell apoptosis. Reprod Biol Endocrinol. 2019;17:9. https://doi.org/10.1186/s12958-018-0450-y.

Article  PubMed  PubMed Central  Google Scholar 

Echiburú B, Milagro F, Crisosto N, Pérez-Bravo F, Flores C, Arpón A, et al. DNA methylation in promoter regions of genes involved in the reproductive and metabolic function of children born to women with PCOS. Epigenetics. 2020;15(11):1178–94. https://doi.org/10.1080/15592294.2020.1754674.

Article  PubMed  PubMed Central  Google Scholar 

Amiri M, Hatoum S, Hopkins D, Buyalos RP, Ezeh U, Pace LA, et al. The association between obesity and polycystic ovary syndrome: an epidemiologic study of observational data. J Clin Endocrinol Metab. 2024;109:2640–57. https://doi.org/10.1210/clinem/dgae488.

Article  CAS  PubMed  Google Scholar 

Guay S-P, Brisson D, Lamarche B, Biron S, Lescelleur O, Biertho L, et al. ADRB3 gene promoter DNA methylation in blood and visceral adipose tissue is associated with metabolic disturbances in men. Epigenomics. 2014;6:33–43. https://doi.org/10.2217/epi.13.82.

Article  CAS  PubMed  Google Scholar 

Nilsson E, Benrick A, Kokosar M, Krook A, Lindgren E, Källman T, et al. Transcriptional and epigenetic changes influencing skeletal muscle metabolism in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2018;103:4465–77. https://doi.org/10.1210/jc.2018-00935.

Article  PubMed  Google Scholar 

Liu Y-N, Qin Y, Wu B, Peng H, Li M, Luo H, et al. DNA methylation in polycystic ovary syndrome: emerging evidence and challenges. Reprod Toxicol. 2022;111:11–9. https://doi.org/10.1016/j.reprotox.2022.04.010.

Article  CAS  PubMed  Google Scholar 

Rawat K, Sandhu A, Gautam V, Saha PK, Saha L. Role of genomic DNA methylation in PCOS pathogenesis: a systematic review and meta-analysis involving case-controlled clinical studies. Mol Hum Reprod. 2022;28:gaac024. https://doi.org/10.1093/molehr/gaac024.

Article  CAS  PubMed  Google Scholar 

Wells G, Wells G, Shea B, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P, Ga SW, Zello G, Petersen J. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2014. https://www.semanticscholar.org/paper/The-Newcastle-Ottawa-Scale-(NOS)-for-Assessing-the-Wells-Wells/c293fb316b6176154c3fdbb8340a107d9c8c82bf. Accessed December 11, 2024

Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9. https://doi.org/10.1093/bioinformatics/btz931.

Article  CAS  PubMed  Google Scholar 

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:638–46. https://doi.org/10.1093/nar/gkac1000.

Article  CAS  Google Scholar 

Xu J, Bao X, Peng Z, Wang L, Du L, Niu W, et al. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell. Oncotarget. 2016;7:27899–909. https://doi.org/10.18632/oncotarget.8544.

Article  PubMed  PubMed Central  Google Scholar 

Qu F, Wang F-F, Yin R, Ding G-L, El-Prince M, Gao Q, et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J Mol Med (Berl). 2012;90:911–23. https://doi.org/10.1007/s00109-012-0881-4.

Article  CAS  PubMed  Google Scholar 

Ting W, Yanyan Q, Jian H, Keqin H, Duan M. The relationship between insulin resistance and CpG island methylation of LMNA gene in polycystic ovary syndrome. Cell Biochem Biophys. 2013;67:1041–7. https://doi.org/10.1007/s12013-013-9602-z.

Article  CAS  PubMed  Google Scholar 

Yu Y-Y, Sun C-X, Liu Y-K, Li Y, Wang L, Zhang W. Promoter methylation of CYP19A1 gene in Chinese polycystic ovary syndrome patients. Gynecol Obstet Invest. 2013;76:209–13. https://doi.org/10.1159/000355314.

Article  CAS  PubMed  Google Scholar 

Yu Y-Y, Sun C-X, Liu Y-K, Li Y, Wang L, Zhang W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil Steril. 2015;104:145-153.e6. https://doi.org/10.1016/j.fertnstert.2015.04.005.

Article  CAS  PubMed  Google Scholar 

Sang Q, Zhang S, Zou S, Wang H, Feng R, Li Q, et al. Quantitative analysis of follistatin (FST) promoter methylation in peripheral blood of patients with polycystic ovary syndrome. Reprod Biomed Online. 2013;26:157–63. https://doi.org/10.1016/j.rbmo.2012.10.011.

Article  CAS  PubMed  Google Scholar 

Sang Q, Li X, Wang H, Wang H, Zhang S, Feng R, et al. Quantitative methylation level of the EPHX1 promoter in peripheral blood DNA is associated with polycystic ovary syndrome. PLoS One. 2014;9:e88013. https://doi.org/10.1371/journal.pone.0088013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen H, Qiu L, Zhang Z, Qin Y, Cao C, Di W. Genome-wide methylated DNA immunoprecipitation analysis of patients with polycystic ovary syndrome. PLoS One. 2013;8:e64801. https://doi.org/10.1371/journal.pone.0064801.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif