The Methylation Regulator PRDM6 Confers Protection Against Polycystic Ovary Syndrome: Evidences from Bioinformatics and Experimental Approaches

Wani R, Shaikh M. Healing with herbs: A systematic review of natural treatments for polycystic ovary syndrome. JBRA Assist Reprod; 2025.

Zhang W, Wu F. Elevated linoleic acid intake becomes a risk factor for polycystic ovary syndrome by affecting ovarian granulosa cells. FASEB J. 2025;39:e70518.

Article  CAS  PubMed  Google Scholar 

Diakosavvas M, Oyebode O, Bhide P. Weight management strategies to reduce metabolic morbidity in women with polycystic ovary syndrome. Curr Obes Rep. 2025;14:22.

Article  PubMed  PubMed Central  Google Scholar 

Zhao H, Zhang J, Cheng X, Nie X, He B. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res. 2023;16:9.

Article  PubMed  PubMed Central  Google Scholar 

Mahabamunuge J, Sekula NM, Lepore C, Kudrimoti M, Upadhyay A, Alshowaikh K et al. The molecular basis of polycystic ovary syndrome and its cardiometabolic correlates: exploring the intersection and its clinical Implications-A narrative review. Biomedicines. 2025;13.

Del Río JP, Tsompanidis A, Gaspar PA, Maturana-Hurtado A, Rojas-Costa GM, Dagnino-Subiabre A, et al. Women with polycystic ovary syndrome (PCOS): likelihood of cooccurring neuropsychiatric conditions and the dual hit hypothesis. Front Neuroendocrinol. 2025;77:101188.

Article  PubMed  Google Scholar 

Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M et al. Polycystic ovary syndrome: A comprehensive review of Pathogenesis, Management, and drug repurposing. Int J Mol Sci. 2022;23.

Ortiz-Flores AE, Luque-Ramírez M, Escobar-Morreale HF. Polycystic ovary syndrome in adult women. Med Clin (Barc). 2019;152:450–7.

Article  PubMed  Google Scholar 

Bruni V, Capozzi A, Lello S. The role of genetics, epigenetics and lifestyle in polycystic ovary syndrome development: the state of the art. Reprod Sci. 2022;29:668–79.

Article  PubMed  Google Scholar 

Stener-Victorin E, Deng Q. Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nat Rev Endocrinol. 2021;17:521–33.

Article  PubMed  Google Scholar 

Eiras MC, Pinheiro DP, Romcy KAM, Ferriani RA, Reis RMD, Furtado CLM. Polycystic ovary syndrome: the epigenetics behind the disease. Reprod Sci. 2022;29:680–94.

Article  PubMed  Google Scholar 

Liu YN, Qin Y, Wu B, Peng H, Li M, Luo H, et al. DNA methylation in polycystic ovary syndrome: emerging evidence and challenges. Reprod Toxicol. 2022;111:11–9.

Article  PubMed  Google Scholar 

Vázquez-Martínez ER, Gómez-Viais YI, García-Gómez E, Reyes-Mayoral C, Reyes-Muñoz E, Camacho-Arroyo I, et al. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction. 2019;158:R27–40.

Article  PubMed  Google Scholar 

Miranda AG, Seneda MM, Faustino LR. DNA methylation associated with polycystic ovary syndrome: a systematic review. Arch Gynecol Obstet. 2024;309:373–83.

Article  PubMed  Google Scholar 

Xie L, Jiang X, Chen Y, Huang C, Chen Y, Liu G, et al. 3 CpG methylation biomarkers for the diagnosis of polycystic ovary syndrome (PCOS) in blood samples. Comb Chem High Throughput Screen. 2022;25:1304–13.

Article  CAS  PubMed  Google Scholar 

Cao P, Yang W, Wang P, Li X, Nashun B. Characterization of DNA methylation and screening of epigenetic markers in polycystic ovary syndrome. Front Cell Dev Biol. 2021;9:664843.

Article  PubMed  PubMed Central  Google Scholar 

Liu L, He D, Wang Y, Sheng M. Integrated analysis of DNA methylation and transcriptome profiling of polycystic ovary syndrome. Mol Med Rep. 2020;21:2138–50.

CAS  PubMed  PubMed Central  Google Scholar 

Marakulina D, Vorontsov IE, Kulakovskiy IV, Lennartsson A, Drabløs F, Medvedeva YA. Epifactors 2022: expansion and enhancement of a curated database of human epigenetic factors and complexes. Nucleic Acids Res. 2023;51:D564–70.

Article  CAS  PubMed  Google Scholar 

Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Chen L, Lun ATL, Baldoni PL, Smyth GK. EdgeR v4: powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. Nucleic Acids Res. 2025;53.

Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomart. Nat Protoc. 2009;4:1184–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang D, Liu D, Yuchi J, He F, Jiang Y, Cai S, et al. MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Res. 2020;48:W140–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. Clusterprofiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2:100141.

CAS  PubMed  Google Scholar 

Li J, Peng Y, Dai X, Zhang L, Long X, Wang X et al. Human menopausal gonadotropin (HMG) combined different doses of letrozole for treating anovulatory infertility in patients with polycystic ovary syndrome: a randomized controlled trial. J Assist Reprod Genet. 2025.

Shen YH, Peng S, Zhu T, Shen MJ. Mechanisms of granulosa cell programmed cell death and follicular Atresia in polycystic ovary syndrome. Physiol Res. 2025;74:31–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Fang Y. The role of ovarian granulosa cells Related-ncRNAs in ovarian dysfunctions: mechanism research and clinical exploration. Reprod Sci. 2025.

Hong L, Li N, Gasque V, Mehta S, Ye L, Wu Y et al. Prdm6 controls heart development by regulating neural crest cell differentiation and migration. JCI Insight. 2022;7.

Gunawardhana KL, Hong L, Rugira T, Uebbing S, Kucharczak J, Mehta S et al. A systems biology approach identifies the role of dysregulated PRDM6 in the development of hypertension. J Clin Invest. 2023;133.

Zou M, Mangum KD, Magin JC, Cao HH, Yarboro MT, Shelton EL et al. Prdm6 drives ductus arteriosus closure by promoting ductus arteriosus smooth muscle cell identity and contractility. JCI Insight. 2023;8.

Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet. 2015;47:1282–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt C, Cohen S, Gudenas BL, Husain S, Carlson A, Westelman S, et al. PRDM6 promotes medulloblastoma by repressing chromatin accessibility and altering gene expression. Sci Rep. 2024;14:16074.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gorski JW, Zhang Z, McCorkle JR, DeJohn JM, Wang C, Miller RW et al. Utilizing patient-derived epithelial ovarian cancer tumor organoids to predict carboplatin resistance. Biomedicines. 2021;9.

Hadziselimovic F, Cathomas G, Verkauskas G, Dasevicius D, Stadler MB. PRDM histone methyltransferase mRNA levels increase in response to curative hormone treatment for Cryptorchidism-Dependent male infertility. Genes (Basel). 2018;9.

Zhang H, Mo X, Wang A, Peng H, Guo D, Zhong C, et al. Association of DNA methylation in blood pressure-related genes with ischemic stroke risk and prognosis. Front Cardiovasc Med. 2022;9:796245.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Wang A, Xu T, Mo X, Zhang Y, Promoter. DNA methylation in GWAS-Identified genes as potential functional elements for blood pressure: an observational and Mendelian randomization study. Front Genet. 2021;12:791146.

Article  CAS  PubMed  Google Scholar 

Chen Y, Xie M, Wu S, Deng Z, Tang Y, Guan Y, et al. Multi-omics approach to reveal follicular metabolic changes and their effects on oocyte competence in PCOS patients. Front Endocrinol (Lausanne). 2024;15:1426517.

Article  PubMed  Google Scholar 

Huang JC, Duan CC, Jin S, Sheng CB, Wang YS, Yue ZP, et al. HB-EGF induces mitochondrial dysfunction via estrogen hypersecretion in granulosa cells dependent on cAMP-PKA-JNK/ERK-Ca(2+)-FOXO1 pathway. Int J Biol Sci. 2022;18:2047–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu D, Liu ZK, Sun Y, Gou CH, Shang RZ, Lu M et al. Integrated analysis of the anoikis-related signature identifies Rac family small GTPase 3 as a novel tumor-promoter gene in hepatocellular carcinoma. MedComm (2020). 2025;6:e70125.

Torki Z, Ghavi D, Foruzandeh Z, Zeinali Sehrig F, Hashemi S, Alivand MR, et al. Network-based meta-analysis and confirmation of genes ATP1A2, FXYD1, and ADCY3 associated with cAMP signaling in breast tumors compared to corresponding normalmarginal tissues. Cell Mol Biol (Noisy-le-grand). 2024;70:16–30.

Comments (0)

No login
gif