Joham AE, Norman RJ, Stener-Victorin E, Legro RS, Franks S, Moran LJ, et al. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022;10(9):668–80. https://doi.org/10.1016/s2213-8587(22)00163-2.
Article CAS PubMed Google Scholar
Luo X, Cai WY, Wu XK. Prevalence, pattern and predictors for dyslipidemia of Chinese women with polycystic ovary syndrome. Front Cardiovasc Med. 2021;8:790454. https://doi.org/10.3389/fcvm.2021.790454.
Article PubMed PubMed Central Google Scholar
Wild RA, Rizzo M, Clifton S, Carmina E. Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil Steril. 2011;95(3):1073–9. https://doi.org/10.1016/j.fertnstert.2010.12.027. .e1-11.
Article CAS PubMed Google Scholar
Haoula Z, Ravipati S, Stekel DJ, Ortori CA, Hodgman C, Daykin C, et al. Lipidomic analysis of plasma samples from women with polycystic ovary syndrome. Metabolomics. 2015;11(3):657–66. https://doi.org/10.1007/s11306-014-0726-y.
Article CAS PubMed Google Scholar
Mousa A, Huynh K, Ellery SJ, Strauss BJ, Joham AE, de Courten B, et al. Novel lipidomic signature associated with metabolic risk in women with and without polycystic ovary syndrome. J Clin Endocrinol Metab. 2022;107(5):e1987–99. https://doi.org/10.1210/clinem/dgab931.
Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99(11):E2269–76. https://doi.org/10.1210/jc.2013-3942.
Article CAS PubMed PubMed Central Google Scholar
Zhang XJ, Huang LL, Su H, Chen YX, Huang J, He C, et al. Characterizing plasma phospholipid fatty acid profiles of polycystic ovary syndrome patients with and without insulin resistance using GC-MS and chemometrics approach. J Pharm Biomed Anal. 2014;95:85–92. https://doi.org/10.1016/j.jpba.2014.02.014.
Article CAS PubMed Google Scholar
Tian Y, Zhang J, Li M, Shang J, Bai X, Zhang H, et al. Serum fatty acid profiles associated with metabolic risk in women with polycystic ovary syndrome. Front Endocrinol (Lausanne). 2023;14:1077590. https://doi.org/10.3389/fendo.2023.1077590.
Niu Z, Ye Y, Xia L, Feng Y, Zhang A. Follicular fluid cytokine composition and oocyte quality of polycystic ovary syndrome patients with metabolic syndrome undergoing in vitro fertilization. Cytokine. 2017;91:180–6. https://doi.org/10.1016/j.cyto.2016.12.020.
Article CAS PubMed Google Scholar
Liu L, Yin TL, Chen Y, Li Y, Yin L, Ding J, et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol. 2019;185:142–9. https://doi.org/10.1016/j.jsbmb.2018.08.008.
Article CAS PubMed Google Scholar
Feng Y, Qi J, Xue X, Li X, Liao Y, Sun Y, et al. Follicular free fatty acid metabolic signatures and their effects on oocyte competence in non-obese PCOS patients. Reproduction. 2022;164(1):1–8. https://doi.org/10.1530/rep-22-0023.
Article CAS PubMed Google Scholar
Lai Y, Ye Z, Mu L, Zhang Y, Long X, Zhang C, et al. Elevated levels of follicular fatty acids induce ovarian inflammation via ERK1/2 and inflammasome activation in PCOS. J Clin Endocrinol Metab. 2022;107(8):2307–17. https://doi.org/10.1210/clinem/dgac281.
Group REA-SPCW. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004.
Zarezadeh R, Nouri M, Hamdi K, Shaaker M, Mehdizadeh A, Darabi M. Fatty acids of follicular fluid phospholipids and triglycerides display distinct association with IVF outcomes. Reprod Biomed Online. 2021;42(2):301–9. https://doi.org/10.1016/j.rbmo.2020.09.024.
Article CAS PubMed Google Scholar
Emami N, Alizadeh A, Moini A, Yaghmaei P, Shahhosseini M. Differences in fatty acid profiles and desaturation indices of abdominal subcutaneous adipose tissue between pregnant women with and without PCOS. Adipocyte. 2020;9(1):16–23. https://doi.org/10.1080/21623945.2019.1710021.
Article CAS PubMed PubMed Central Google Scholar
Zhang CH, Liu XY, Wang J. Essential role of granulosa cell glucose and lipid metabolism on oocytes and the potential metabolic imbalance in polycystic ovary syndrome. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms242216247.
Article PubMed PubMed Central Google Scholar
Liu J, Li J, Wu X, Zhang M, Yan G, Sun H, et al. High levels of fatty acid-binding protein 5 excessively enhances fatty acid synthesis and proliferation of granulosa cells in polycystic ovary syndrome. J Ovarian Res. 2024;17(1):44. https://doi.org/10.1186/s13048-024-01368-6.
Article CAS PubMed PubMed Central Google Scholar
Hennet ML, Combelles CM. The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol. 2012;56(10–12):819–31. https://doi.org/10.1387/ijdb.120133cc.
Article CAS PubMed Google Scholar
Valckx SD, Arias-Alvarez M, De Pauw I, Fievez V, Vlaeminck B, Fransen E, et al. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod Biol Endocrinol. 2014;12:13. https://doi.org/10.1186/1477-7827-12-13.
Article CAS PubMed PubMed Central Google Scholar
Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):R15–27. https://doi.org/10.1530/rep-13-0251.
Article CAS PubMed Google Scholar
Liu Y, Tilleman K, Vlaeminck B, Gervais R, Chouinard PY, De Sutter P, et al. Composition and distribution of fatty acids in various lipid fractions in serum and follicular fluid of women undergoing assisted reproductive technology. PLoS ONE. 2023;18(6):e0286946. https://doi.org/10.1371/journal.pone.0286946.
Article CAS PubMed PubMed Central Google Scholar
Moreira MV, Vale-Fernandes E, Albergaria IC, Alves MG, Monteiro MP. Follicular fluid composition and reproductive outcomes of women with polycystic ovary syndrome undergoing in vitro fertilization: a systematic review. Rev Endocr Metab Disord. 2023;24(6):1045–73. https://doi.org/10.1007/s11154-023-09819-z.
Article PubMed PubMed Central Google Scholar
Xu Y, Zhou Z, Zhang G, Yang Z, Shi Y, Jiang Z, et al. Metabolome implies increased fatty acid utilization and histone methylation in the follicles from hyperandrogenic PCOS women. J Nutr Biochem. 2024;125:109548. https://doi.org/10.1016/j.jnutbio.2023.109548.
Article CAS PubMed Google Scholar
Naigaonkar A, Dadachanji R, Hinduja I, Mukherjee S. Altered redox status May contribute to aberrant folliculogenesis and poor reproductive outcomes in women with polycystic ovary syndrome. J Assist Reprod Genet. 2021;38(10):2609–23. https://doi.org/10.1007/s10815-021-02241-x.
Article PubMed PubMed Central Google Scholar
Nafiye Y, Sevtap K, Muammer D, Emre O, Senol K, Leyla M. The effect of serum and intrafollicular insulin resistance parameters and homocysteine levels of nonobese, nonhyperandrogenemic polycystic ovary syndrome patients on in vitro fertilization outcome. Fertil Steril. 2010;93(6):1864–9. https://doi.org/10.1016/j.fertnstert.2008.12.024.
Article CAS PubMed Google Scholar
Emanuel RHK, Roberts J, Docherty PD, Lunt H, Campbell RE, Möller K. A review of the hormones involved in the endocrine dysfunctions of polycystic ovary syndrome and their interactions. Front Endocrinol (Lausanne). 2022;13:1017468. https://doi.org/10.3389/fendo.2022.1017468.
Dai M, Hong L, Yin T, Liu S. Disturbed follicular microenvironment in polycystic ovary syndrome: relationship to oocyte quality and infertility. Endocrinology. 2024. https://doi.org/10.1210/endocr/bqae023.
Comments (0)