PHLPP1 deficiency alleviates dopaminergic neurodegeneration and represses neuroinflammation in Parkinson’s disease

Kalia LV, Lang AE. Parkinson’s Disease Lancet. 2015;386:896–912.

CAS  PubMed  Google Scholar 

Mitra S, Chakrabarti N, Dutta SS, Ray S, Bhattacharya P, Sinha P, Bhattacharyya A. Gender-specific brain regional variation of neurons, endogenous estrogen, neuroinflammation and glial cells during rotenone-induced mouse model of parkinson’s disease. Neuroscience. 2015;292:46–70.

Article  CAS  PubMed  Google Scholar 

Mitra S, Ghosh N, Sinha P, Chakrabarti N, Bhattacharyya A. Alteration in nuclear Factor-KappaB pathway and functionality of Estrogen via receptors promote neuroinflammation in frontal cortex after 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine treatment. Sci Rep. 2015;5:13949.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Song N, Jia F, Tang T, Bao W, Zuo C, Xie J, Jiang H. Genomic DNA levels of mutant Alpha-synuclein correlate with Non-Motor symptoms in an A53T parkinson’s disease mouse model. Neurochem Int. 2018;114:71–9.

Article  CAS  PubMed  Google Scholar 

Fitzgerald E, Murphy S, Martinson HA. Alpha-synuclein pathology and the role of the microbiota in parkinson’s disease. Front Neurosci. 2019;13:369.

Article  PubMed  PubMed Central  Google Scholar 

Xu L, Pu J. Alpha-Synuclein in Parkinson’s Disease: From Pathogenetic Dysfunction to Potential Clinical Application. Park. Dis. 2016;2016:1720621.

Shao W, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature. 2013;494:90–4.

Article  CAS  PubMed  Google Scholar 

Yadav SK, Rai SN, Singh SP. Mucuna pruriens reduces inducible nitric oxide synthase expression in parkinsonian mice model. J Chem Neuroanat. 2017;80:1–10.

Article  CAS  PubMed  Google Scholar 

Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced parkinsonian mouse model. J Chem Neuroanat. 2016;71:41–9.

Article  CAS  PubMed  Google Scholar 

Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN, Singh SP. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res. 2014;39(12):2527–36.

Article  CAS  PubMed  Google Scholar 

Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN, Kumar A, Singh V, Singh SK. WNT-β Catenin signaling as a potential therapeutic target for neurodegenerative diseases: current status and future perspective. Diseases. 2023;11(3):89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyamoto S, Purcell NH, Smith JM, Gao T, Whittaker R, Huang K, Castillo R, Glembotski CC, Sussman MA, Newton AC, Heller Brown J. PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ Res. 2010;107(4):476–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warfel NA, Niederst M, Stevens MW, Brennan PM, Frame MC, Newton AC. Mislocalization of the E3 ligase, β-transducin repeat-containing protein 1 (β-TrCP1), in glioblastoma uncouples negative feedback between the pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and Akt. J Biol Chem. 2011;286(22):19777–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen B, van Winkle JA, Lyden PD, Brown JH, Purcell NH. PHLPP1 gene deletion protects the brain from ischemic injury. J Cereb Blood Flow Metab. 2013;33(2):196–204.

Article  CAS  PubMed  Google Scholar 

Jackson TC, Verrier JD, Drabek T, Janesko-Feldman K, Gillespie DG, Uray T, Dezfulian C, Clark RS, Bayir H, Jackson EK, Kochanek PM. Pharmacological Inhibition of pleckstrin homology domain leucine-rich repeat protein phosphatase is neuroprotective: differential effects on astrocytes s. J Pharmacol Exp Ther. 2013;347(2):516–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimizu K, Phan T, Mansuy IM, Storm DR. Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Cell. 2007;128(6):1219–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saito K-I, Elcet JS, Hamos JE, Nixon RA. Widespread activation of calciumactivated neutral proteinase (calpain) in the brain in alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A. 1993;90(7):2628–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saavedra A, García-Martínez JM, Xifro X, Giralt A, Torres-Peraza JF, Canals JM, Díaz-Hernandez M, Lucas JJ, Alberch J, P´erez-Navarro E. PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in huntington’s disease striatum. Cell Death Differ. 2010;17(2):324–35.

Article  CAS  PubMed  Google Scholar 

Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of parkinson’s disease. Nat Protoc. 2007;2(1):141–51.

Article  CAS  PubMed  Google Scholar 

Rai SN, Singh P. Advancement in the modelling and therapeutics of parkinson’s disease. J Chem Neuroanat. 2020;104:101752.

Article  CAS  PubMed  Google Scholar 

Sinha P, Chakrabarti N, Ghosh N, Mitra S, Dalui S, Bhattacharyya A. Alterations of thyroidal status in brain regions and hypothalamo-pituitary-blood-thyroid-axis associated with dopaminergic depletion in substantia Nigra and ROS formation in different brain regions after MPTP treatment in adult male mice. Brain Res Bull. 2020;156:131–40.

Article  CAS  PubMed  Google Scholar 

Huang Y, Liu Z, Wang XQ, Qiu YH, Peng YP. A dysfunction of CD4 + T lymphocytes in peripheral immune system of parkinson’s disease model mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2014;30(6):567–76.

CAS  PubMed  Google Scholar 

Wu DD, Huang L, Zhang L, Wu LY, Li YC, Feng L. LLDT-67 attenuates MPTP-induced neurotoxicity in mice by up-regulating NGF expression. Acta Pharmacol Sin. 2012;33(9):1187–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005;6(12):1182–90.

Article  CAS  PubMed  Google Scholar 

Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of parkinson’s disease. Proc Natl Acad Sci U S A. 2004;101(2):665–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 2001;25(4):402–408.

Boonying W, Joselin A, Huang E, Qu D, Safarpour F, Iyirhiaro GO, Gonzalez YR, Callaghan SM, Slack RS, Figeys D, Chung YH, Park DS. Pink1 regulates FKBP5 interaction with AKT/PHLPP and protects neurons from neurotoxin stress induced by MPP+. J Neurochem. 2019;150(3):312–29.

Article  CAS  PubMed  Google Scholar 

Jackson TC, Verrier JD, Semple-Rowland S, Kumar A, Foster TC. PHLPP1 splice variants differentially regulate AKT and PKCα signaling in hippocampal neurons: characterization of PHLPP proteins in the adult hippocampus. J Neurochem. 2010;115(4):941–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Latif AMA, Rabie MA, Sayed RH, Fattah MAAE, Kenawy SA. Inosine attenuates rotenone-induced parkinson’s disease in rats by alleviating the imbalance between autophagy and apoptosis. Drug Dev Res. 2023;84(6):1159–74.

Article  CAS  PubMed  Google Scholar 

McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia Nigra of parkinson’s and alzheimer’s disease brains. Neurology. 1988;38:1285–91.

Article 

Comments (0)

No login
gif