Kalia LV, Lang AE. Parkinson’s Disease Lancet. 2015;386:896–912.
Mitra S, Chakrabarti N, Dutta SS, Ray S, Bhattacharya P, Sinha P, Bhattacharyya A. Gender-specific brain regional variation of neurons, endogenous estrogen, neuroinflammation and glial cells during rotenone-induced mouse model of parkinson’s disease. Neuroscience. 2015;292:46–70.
Article CAS PubMed Google Scholar
Mitra S, Ghosh N, Sinha P, Chakrabarti N, Bhattacharyya A. Alteration in nuclear Factor-KappaB pathway and functionality of Estrogen via receptors promote neuroinflammation in frontal cortex after 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine treatment. Sci Rep. 2015;5:13949.
Article CAS PubMed PubMed Central Google Scholar
Wang W, Song N, Jia F, Tang T, Bao W, Zuo C, Xie J, Jiang H. Genomic DNA levels of mutant Alpha-synuclein correlate with Non-Motor symptoms in an A53T parkinson’s disease mouse model. Neurochem Int. 2018;114:71–9.
Article CAS PubMed Google Scholar
Fitzgerald E, Murphy S, Martinson HA. Alpha-synuclein pathology and the role of the microbiota in parkinson’s disease. Front Neurosci. 2019;13:369.
Article PubMed PubMed Central Google Scholar
Xu L, Pu J. Alpha-Synuclein in Parkinson’s Disease: From Pathogenetic Dysfunction to Potential Clinical Application. Park. Dis. 2016;2016:1720621.
Shao W, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature. 2013;494:90–4.
Article CAS PubMed Google Scholar
Yadav SK, Rai SN, Singh SP. Mucuna pruriens reduces inducible nitric oxide synthase expression in parkinsonian mice model. J Chem Neuroanat. 2017;80:1–10.
Article CAS PubMed Google Scholar
Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced parkinsonian mouse model. J Chem Neuroanat. 2016;71:41–9.
Article CAS PubMed Google Scholar
Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN, Singh SP. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res. 2014;39(12):2527–36.
Article CAS PubMed Google Scholar
Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN, Kumar A, Singh V, Singh SK. WNT-β Catenin signaling as a potential therapeutic target for neurodegenerative diseases: current status and future perspective. Diseases. 2023;11(3):89.
Article CAS PubMed PubMed Central Google Scholar
Miyamoto S, Purcell NH, Smith JM, Gao T, Whittaker R, Huang K, Castillo R, Glembotski CC, Sussman MA, Newton AC, Heller Brown J. PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ Res. 2010;107(4):476–84.
Article CAS PubMed PubMed Central Google Scholar
Warfel NA, Niederst M, Stevens MW, Brennan PM, Frame MC, Newton AC. Mislocalization of the E3 ligase, β-transducin repeat-containing protein 1 (β-TrCP1), in glioblastoma uncouples negative feedback between the pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and Akt. J Biol Chem. 2011;286(22):19777–88.
Article CAS PubMed PubMed Central Google Scholar
Chen B, van Winkle JA, Lyden PD, Brown JH, Purcell NH. PHLPP1 gene deletion protects the brain from ischemic injury. J Cereb Blood Flow Metab. 2013;33(2):196–204.
Article CAS PubMed Google Scholar
Jackson TC, Verrier JD, Drabek T, Janesko-Feldman K, Gillespie DG, Uray T, Dezfulian C, Clark RS, Bayir H, Jackson EK, Kochanek PM. Pharmacological Inhibition of pleckstrin homology domain leucine-rich repeat protein phosphatase is neuroprotective: differential effects on astrocytes s. J Pharmacol Exp Ther. 2013;347(2):516–28.
Article CAS PubMed PubMed Central Google Scholar
Shimizu K, Phan T, Mansuy IM, Storm DR. Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Cell. 2007;128(6):1219–29.
Article CAS PubMed PubMed Central Google Scholar
Saito K-I, Elcet JS, Hamos JE, Nixon RA. Widespread activation of calciumactivated neutral proteinase (calpain) in the brain in alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A. 1993;90(7):2628–32.
Article CAS PubMed PubMed Central Google Scholar
Saavedra A, García-Martínez JM, Xifro X, Giralt A, Torres-Peraza JF, Canals JM, Díaz-Hernandez M, Lucas JJ, Alberch J, P´erez-Navarro E. PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in huntington’s disease striatum. Cell Death Differ. 2010;17(2):324–35.
Article CAS PubMed Google Scholar
Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of parkinson’s disease. Nat Protoc. 2007;2(1):141–51.
Article CAS PubMed Google Scholar
Rai SN, Singh P. Advancement in the modelling and therapeutics of parkinson’s disease. J Chem Neuroanat. 2020;104:101752.
Article CAS PubMed Google Scholar
Sinha P, Chakrabarti N, Ghosh N, Mitra S, Dalui S, Bhattacharyya A. Alterations of thyroidal status in brain regions and hypothalamo-pituitary-blood-thyroid-axis associated with dopaminergic depletion in substantia Nigra and ROS formation in different brain regions after MPTP treatment in adult male mice. Brain Res Bull. 2020;156:131–40.
Article CAS PubMed Google Scholar
Huang Y, Liu Z, Wang XQ, Qiu YH, Peng YP. A dysfunction of CD4 + T lymphocytes in peripheral immune system of parkinson’s disease model mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2014;30(6):567–76.
Wu DD, Huang L, Zhang L, Wu LY, Li YC, Feng L. LLDT-67 attenuates MPTP-induced neurotoxicity in mice by up-regulating NGF expression. Acta Pharmacol Sin. 2012;33(9):1187–94.
Article CAS PubMed PubMed Central Google Scholar
Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005;6(12):1182–90.
Article CAS PubMed Google Scholar
Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of parkinson’s disease. Proc Natl Acad Sci U S A. 2004;101(2):665–70.
Article CAS PubMed PubMed Central Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 2001;25(4):402–408.
Boonying W, Joselin A, Huang E, Qu D, Safarpour F, Iyirhiaro GO, Gonzalez YR, Callaghan SM, Slack RS, Figeys D, Chung YH, Park DS. Pink1 regulates FKBP5 interaction with AKT/PHLPP and protects neurons from neurotoxin stress induced by MPP+. J Neurochem. 2019;150(3):312–29.
Article CAS PubMed Google Scholar
Jackson TC, Verrier JD, Semple-Rowland S, Kumar A, Foster TC. PHLPP1 splice variants differentially regulate AKT and PKCα signaling in hippocampal neurons: characterization of PHLPP proteins in the adult hippocampus. J Neurochem. 2010;115(4):941–55.
Article CAS PubMed PubMed Central Google Scholar
El-Latif AMA, Rabie MA, Sayed RH, Fattah MAAE, Kenawy SA. Inosine attenuates rotenone-induced parkinson’s disease in rats by alleviating the imbalance between autophagy and apoptosis. Drug Dev Res. 2023;84(6):1159–74.
Article CAS PubMed Google Scholar
McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia Nigra of parkinson’s and alzheimer’s disease brains. Neurology. 1988;38:1285–91.
Comments (0)