Full free-breathing motion-corrected cardiac cine and late gadolinium enhancement MRI: feasibility and validation in clinical practice

Leiner T, Bogaert J, Friedrich MG et al (2020) SCMR position paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson 22:76. https://doi.org/10.1186/s12968-020-00682-4

Article  PubMed  PubMed Central  Google Scholar 

Dorfman AL, Geva T, Samyn MM (2022) SCMR expert consensus statement for cardiovascular magnetic resonance of acquired and non-structural pediatric heart disease. J Cardiovasc Magn Reson 24:44. https://doi.org/10.1186/s12968-022-00873-1

Article  PubMed  PubMed Central  Google Scholar 

Cocker M, Friedrich MG (2010) Cardiovascular magnetic resonance of myocarditis. Curr Cardiol Rep 12:82–89. https://doi.org/10.1007/s11886-009-0077-x

Article  PubMed  Google Scholar 

Friedrich MG (2008) There is more than shape and function. J Am Coll Cardiol 52:1581–1583. https://doi.org/10.1016/j.jacc.2008.08.010

Article  PubMed  Google Scholar 

von Knobelsdorff-Brenkenhoff F, Schulz-Menger J (2016) Role of cardiovascular magnetic resonance in the guidelines of the European society of cardiology. J Cardiovasc Magn Reson 18:6. https://doi.org/10.1186/s12968-016-0225-6

Article  Google Scholar 

von Knobelsdorff-Brenkenhoff F, Pilz G, Schulz-Menger J (2017) Representation of cardiovascular magnetic resonance in the AHA / ACC guidelines. J Cardiovasc Magn Reson 19:70. https://doi.org/10.1186/s12968-017-0385-z

Article  Google Scholar 

Raman SV, Markl M, Patel AR et al (2022) 30-minute CMR for common clinical indications: a society for cardiovascular magnetic resonance white paper. J Cardiovasc Magn Reson 24:13. https://doi.org/10.1186/s12968-022-00844-6

Article  PubMed  PubMed Central  Google Scholar 

Rajiah PS, François CJ, Leiner T (2023) Cardiac MRI: state of the art. Radiology 307:e223008. https://doi.org/10.1148/radiol.223008

Article  PubMed  Google Scholar 

Goebel J, Nensa F, Schemuth HP et al (2017) Real-time SPARSE-SENSE cine MR imaging in atrial fibrillation: a feasibility study. Acta Radiol 58:922–928. https://doi.org/10.1177/0284185116681037

Article  PubMed  Google Scholar 

Goebel J, Nensa F, Bomas B et al (2016) Real-time SPARSE-SENSE cardiac cine MR imaging: optimization of image reconstruction and sequence validation. Eur Radiol 26:4482–4489. https://doi.org/10.1007/s00330-016-4301-y

Article  PubMed  Google Scholar 

Allen BD, Carr ML, Markl M et al (2018) Accelerated real-time cardiac MRI using iterative sparse SENSE reconstruction: comparing performance in patients with sinus rhythm and atrial fibrillation. Eur Radiol 28:3088–3096. https://doi.org/10.1007/s00330-017-5283-0

Article  PubMed  Google Scholar 

Allen BD, Carr M, Botelho MPF et al (2016) Highly accelerated cardiac MRI using iterative SENSE reconstruction: initial clinical experience. Int J Cardiovasc Imaging 32:955–963. https://doi.org/10.1007/s10554-016-0859-3

Article  PubMed  Google Scholar 

Zou Q, Xu HY, Fu C et al (2021) Utility of single-shot compressed sensing cardiac magnetic resonance cine imaging for assessment of biventricular function in free-breathing and arrhythmic pediatric patients. Int J Cardiol 338:258–264. https://doi.org/10.1016/j.ijcard.2021.06.043

Article  PubMed  Google Scholar 

Cha MJ, Cho I, Hong J et al (2021) Free-breathing motion-corrected single-shot phase-sensitive inversion recovery late-gadolinium-enhancement imaging: a prospective study of image quality in patients with hypertrophic cardiomyopathy. Korean J Radiol 22:1044–1053. https://doi.org/10.3348/kjr.2020.1296

Article  PubMed  PubMed Central  Google Scholar 

Kido T, Kido T, Nakamura M et al (2016) Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson 18:50. https://doi.org/10.1186/s12968-016-0271-0

Article  PubMed  PubMed Central  Google Scholar 

Vermersch M, Longère B, Coisne A et al (2020) Compressed sensing real-time cine imaging for assessment of ventricular function, volumes and mass in clinical practice. Eur Radiol 30:609–619. https://doi.org/10.1007/s00330-019-06341-2

Article  PubMed  Google Scholar 

Longère B, Allard PE, Gkizas CV et al (2021) Compressed sensing real-time cine reduces CMR arrhythmia-related artifacts. J Clin Med. https://doi.org/10.3390/jcm10153274

Article  PubMed  PubMed Central  Google Scholar 

Kido T, Kido T, Nakamura M et al (2017) Assessment of left ventricular function and mass on free-breathing compressed sensing real-time cine imaging. Circ J 81:1463–1468. https://doi.org/10.1253/circj.CJ-17-0123

Article  PubMed  Google Scholar 

Lin L, Li Y, Wang J et al (2023) Free-breathing cardiac cine MRI with compressed sensing real-time imaging and retrospective motion correction: clinical feasibility and validation. Eur Radiol 33:2289–2300. https://doi.org/10.1007/s00330-022-09210-7

Article  PubMed  Google Scholar 

Kocaoglu M, Pednekar AS, Wang H et al (2020) Breath-hold and free-breathing quantitative assessment of biventricular volume and function using compressed SENSE: a clinical validation in children and young adults. J Cardiovasc Magn Reson 22:54. https://doi.org/10.1186/s12968-020-00642-y

Article  PubMed  PubMed Central  Google Scholar 

Fan H, Li S, Lu M et al (2018) Myocardial late gadolinium enhancement: a head-to-head comparison of motion-corrected balanced steady-state free precession with segmented turbo fast low angle shot. Clin Radiol 73:593e1–59593.e9 https://doi.org/10.1016/j.crad.2018.02.002

Article  Google Scholar 

Captur G, Lobascio I, Ye Y et al (2019) Motion-corrected free-breathing LGE delivers high quality imaging and reduces scan time by half: an independent validation study. Int J Cardiovasc Imaging 35:1893–1901. https://doi.org/10.1007/s10554-019-01620-x

Article  PubMed  PubMed Central  Google Scholar 

Wang K, Zhang W, Li S et al (2021) Prognosis in patients with coronary heart disease and breath-holding limitations: a free-breathing cardiac magnetic resonance protocol at 3.0 T. BMC Cardiovasc Disord 21:580. https://doi.org/10.1186/s12872-021-02402-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Takakado M, Kido T, Ogawa R et al (2023) Free-breathing cardiovascular cine magnetic resonance imaging using compressed-sensing and retrospective motion correction: accurate assessment of biventricular volume at 3T. Jpn J Radiol 41(2):142–152. https://doi.org/10.1007/s11604-022-01344-4

Article  PubMed  Google Scholar 

Sudarski S, Henzler T, Haubenreisser H et al (2017) Free-breathing sparse sampling cine MR imaging with iterative reconstruction for the assessment of left ventricular function and mass at 3.0 T. Radiology 282:74–83. https://doi.org/10.1148/radiol.2016151002

Article  PubMed  Google Scholar 

Kellman P, Arai AE (2012) Cardiac imaging techniques for physicians: late enhancement. J Magn Reson Imaging 36:529–542. https://doi.org/10.1002/jmri.23605

Article  PubMed  PubMed Central  Google Scholar 

Klinke V, Muzzarelli S, Lauriers N et al (2013) Quality assessment of cardiovascular magnetic resonance in the setting of the European CMR registry: description and validation of standardized criteria. J Cardiovasc Magn Reson 15:55. https://doi.org/10.1186/1532-429X-15-55

Article  PubMed  PubMed Central  Google Scholar 

Schulz-Menger J, Bluemke DA, Bremerich J et al (2020) Standardized image interpretation and post-processing in cardiovascular magnetic resonance – 2020 update: society for cardiovascular magnetic resonance (SCMR): board of trustees task force on standardized post-processing. J Cardiovasc Magn Reson 22:19. https://doi.org/10.1186/s12968-020-00610-6

Article  PubMed  PubMed Central  Google Scholar 

Kellman P, Chefd’hotel C, Lorenz CH et al (2009) High Spatial and Temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting. Magn Reson Med 62:1557–1564. https://doi.org/10.1002/mrm.22153

Article  PubMed  PubMed Central  Google Scholar 

Flett AS, Hasleton J, Cook C (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging 4:150–156. https://doi.org/10.1016/j.jcmg.2010.11.015

Article  PubMed 

Comments (0)

No login
gif