Seo SH, Paul SK, Shikder M (2021) An insight into pathophysiological features and therapeutic advances on ependymoma. Cancers (Basel). https://doi.org/10.3390/cancers13133221
Article PubMed PubMed Central Google Scholar
Neumann JE, Spohn M, Obrecht D et al (2020) Molecular characterization of histopathological ependymoma variants. Acta neuropathologica. 139(2):305–318https://doi.org/10.1007/s00401-019-02090-0
Lin FY, Chintagumpala M (2015) Advances in management of pediatric ependymomas. Curr Oncol Rep 2015(10):47. https://doi.org/10.1007/s11912-015-0470-0
Pajtler KW, Mack SC, Ramaswamy V et al (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 133(1):5–12. https://doi.org/10.1007/s00401-016-1643-0
Article CAS PubMed Google Scholar
Zhang M, Wang E, Yecies D et al (2022) Radiomic signatures of posterior fossa ependymoma: molecular subgroups and risk profiles. Neuro-oncol 24(6):986–994. https://doi.org/10.1093/neuonc/noab272
Lampros M, Voulgaris S, Alexiou GA (2024) Commentary: impact of molecular subgroups on prognosis and survival outcomes in posterior fossa ependymomas: a retrospective study of 412 cases. Neurosurgery 95(3):e79. https://doi.org/10.1227/neu.0000000000002952
Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncology 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106
Article CAS PubMed PubMed Central Google Scholar
Rudà R, Bruno F, Pellerino A, Soffietti R (2022) Ependymoma: Evaluation and Management Updates. Current Oncology Reports. 24(8):985–993https://doi.org/10.1007/s11912-022-01260-w
Wu T, Zhang ZW, Li S et al (2020) Characterization of global 5-hydroxymethylcytosine in pediatric posterior fossa ependymoma. Clinical epigenetics. 12(1):19https://doi.org/10.1186/s13148-020-0809-8
Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica. 131(6):803–820.https://doi.org/10.1007/s00401-016-1545-1
Bakes E, Cheng R, Mañucat-Tan N, Ramaswamy V, Hansford JR (2025) Advances in molecular prognostication and treatments in ependymoma. Journal of neuro-oncology. 172(2):317–326.https://doi.org/10.1007/s11060-024-04923-9
Łastowska M, Matyja E, Sobocińska A et al (2021) Transcriptional profiling of paediatric ependymomas identifies prognostically significant groups. The journal of pathology Clinical research 7(6):565–576. https://doi.org/10.1002/cjp2.236
Article CAS PubMed PubMed Central Google Scholar
Cavalli FMG, Hübner JM, Sharma T et al (2018) Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol 136(2):227–237. https://doi.org/10.1007/s00401-018-1888-x
Article CAS PubMed PubMed Central Google Scholar
Cheng D, Zhuo Z, Du J et al (2024) A Fully Automated Deep-Learning Model for Predicting the Molecular Subtypes of Posterior Fossa Ependymomas Using T2-Weighted Images. Clinical cancer research: an official journal of the American Association for Cancer Research. 30(1):150–158https://doi.org/10.1158/1078-0432.Ccr-23-1461
Rudà R, Reifenberger G, Frappaz D et al (2018) EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro-oncology 20(4):445–456. https://doi.org/10.1093/neuonc/nox166
Pajtler KW, Wen J, Sill M et al (2018) Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 136(2):211–226. https://doi.org/10.1007/s00401-018-1877-0
Article CAS PubMed PubMed Central Google Scholar
Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20(2):143–157. https://doi.org/10.1016/j.ccr.2011.07.007
Article CAS PubMed PubMed Central Google Scholar
Kresbach C, Neyazi S, Schüller U (2022) Updates in the classification of ependymal neoplasms: The 2021 WHO Classification and beyond. Brain pathology (Zurich, Switzerland) 32(4):e13068https://doi.org/10.1111/bpa.13068
Cui Z, Ren G, Cai R et al (2022) MRI-based texture analysis for differentiate between pediatric posterior fossa ependymoma type A and B. European journal of radiology. https://doi.org/10.1016/j.ejrad.2022.110288
Yonezawa U, Karlowee V, Amatya VJ et al (2020) Radiology Profile as a Potential Instrument to Differentiate Between Posterior Fossa Ependymoma (PF-EPN) Group A and B. World neurosurgery. 140:e320-https://doi.org/10.1016/j.wneu.2020.05.063
Kerleroux B, Cottier JP, Janot K, Listrat A, Sirinelli D, Morel B (2020) Posterior fossa tumors in children: Radiological tips & tricks in the age of genomic tumor classification and advance MR technology. Journal of neuroradiology = Journal de neuroradiologie. 47(1):46–53. https://doi.org/10.1016/j.neurad.2019.08.002
Mata-Mbemba D, Donnellan J, Krishnan P, Shroff M, Muthusami P (2018) Imaging Features of Common Pediatric Intracranial Tumours: A Primer for the Radiology Trainee. Canadian Association of Radiologists journal = Journal l’Association canadienne des radiologistes. 69(1):105–117. https://doi.org/10.1016/j.carj.2017.10.006
Raybaud C, Ramaswamy V, Taylor MD, Laughlin S (2015) Posterior fossa tumors in children: developmental anatomy and diagnostic imaging. Childs Nerv Syst 31(10):1661–1676. https://doi.org/10.1007/s00381-015-2834-z
Demirel E, Dilek O (2025) Utilizing radiomics of peri-lesional edema in T2-FLAIR subtraction digital images to distinguish high-grade glial tumors from brain metastasis. J Magn Reson Imaging 61(4):1728–1737. https://doi.org/10.1002/jmri.29572
Mayerhoefer ME, Szomolanyi P, Jirak D et al (2009) Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study. Investigative radiology. 44(7):405–411. https://doi.org/10.1097/RLI.0b013e3181a50a66
Saha A, Harowicz MR, Mazurowski MA (2018) Breast cancer MRI radiomics: an overview of algorithmic features and impact of inter-reader variability in annotating tumors. Med Phys 45(7):3076–3085. https://doi.org/10.1002/mp.12925
Article PubMed PubMed Central Google Scholar
Zhang Y, Ko CC, Chen JH (2020) Radiomics approach for prediction of recurrence in non-functioning pituitary macroadenomas. Front Oncol. https://doi.org/10.3389/fonc.2020.590083
Article PubMed PubMed Central Google Scholar
Zhou M, Scott J, Chaudhury B et al (2018) Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. AJNR American journal of neuroradiology. 39(2):208–216.https://doi.org/10.3174/ajnr.A5391
Tang T, Wu Y, Dong X, Zhai X (2025) Multimodal MRI radiomics enhances epilepsy prediction in pediatric low-grade glioma patients. J Neuro-oncol 174(2):431–437. https://doi.org/10.1007/s11060-025-05073-2
Wei J, Yang G, Hao X et al (2019) A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. European radiology. 29(2):877–888. https://doi.org/10.1007/s00330-018-5575-z
Ma X, Qian X, Wang Q et al (2023) Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma. Radiol Med 128(11):1296–1309. https://doi.org/10.1007/s11547-023-01704-8
Article PubMed PubMed Central Google Scholar
Xue K, Liu L, Liu Y, Guo Y, Zhu Y, Zhang M (2022) Radiomics model based on multi-sequence MR images for predicting preoperative immunoscore in rectal cancer. Radiol Med 127(7):702–713. https://doi.org/10.1007/s11547-022-01507-3
Yuan L, Lu J, Shu X et al (2025) The classification of vestibular schwannoma (VS) and cerebellopontine angle meningioma (CPAM) based on multimodal magnetic resonance imaging analysis. Diagnostics. https://doi.org/10.3390/diagnostics15091157
Article PubMed PubMed Central Google Scholar
He A, Wang P, Zhu A, Liu Y, Chen J, Liu L (2022) Predicting IDH mutation status in low-grade gliomas based on optimal radiomic features combined with multi-sequence magnetic resonance imaging. Diagnostics. https://doi.org/10.3390/diagnostics12122995
Article PubMed PubMed Central Google Scholar
Wu J, Xia Y, Wang X (2023) uRP: An integrated research platform for one-stop analysis of medical images. Front Radiol. https://doi.org/10.3389/fradi.2023.1153784
Article PubMed PubMed Central Google Scholar
van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research. 77(21):e104-https://doi.org/10.1158/0008-5472.Can-17-0339
Raihan MJ, Khan MA, Kee SH, Nahid AA (2023) Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP. Sci Rep 13(1):6263. https://doi.org/10.1038/s41598-023-33525-0
Article CAS PubMed PubMed Central Google Scholar
Lim KY, Lee K, Shim Y et al (2022) Molecular subtyping of ependymoma and prognostic impact of Ki-67. Brain tumor pathology 39(1):1–13. https://doi.org/10.1007/s10014-021-00417-y
Article CAS PubMed Google Scholar
Träger M, Schweizer L, Pérez E et al (2023) Adult intracranial ependymoma-relevance of DNA methylation profiling for diagnosis, prognosis, and treatment. Neuro-Oncology 25(7):1286–1298.https://doi.org/10.1093/neuonc/noad030
Witt H, Gramatzki D, Hentschel B et al (2018) DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro-oncol 20(12):1616–1624. https://doi.org/10.1093/neuonc/noy118
Comments (0)