A predictive model for differentiating PFA and PFB subtypes of posterior fossa ependymoma using multi-sequence MRI radiomics: a two-center study

Seo SH, Paul SK, Shikder M (2021) An insight into pathophysiological features and therapeutic advances on ependymoma. Cancers (Basel). https://doi.org/10.3390/cancers13133221

Article  PubMed  PubMed Central  Google Scholar 

Neumann JE, Spohn M, Obrecht D et al (2020) Molecular characterization of histopathological ependymoma variants. Acta neuropathologica. 139(2):305–318https://doi.org/10.1007/s00401-019-02090-0

Lin FY, Chintagumpala M (2015) Advances in management of pediatric ependymomas. Curr Oncol Rep 2015(10):47. https://doi.org/10.1007/s11912-015-0470-0

Article  Google Scholar 

Pajtler KW, Mack SC, Ramaswamy V et al (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 133(1):5–12. https://doi.org/10.1007/s00401-016-1643-0

Article  CAS  PubMed  Google Scholar 

Zhang M, Wang E, Yecies D et al (2022) Radiomic signatures of posterior fossa ependymoma: molecular subgroups and risk profiles. Neuro-oncol 24(6):986–994. https://doi.org/10.1093/neuonc/noab272

Article  PubMed  Google Scholar 

Lampros M, Voulgaris S, Alexiou GA (2024) Commentary: impact of molecular subgroups on prognosis and survival outcomes in posterior fossa ependymomas: a retrospective study of 412 cases. Neurosurgery 95(3):e79. https://doi.org/10.1227/neu.0000000000002952

Article  PubMed  Google Scholar 

Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncology 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rudà R, Bruno F, Pellerino A, Soffietti R (2022) Ependymoma: Evaluation and Management Updates. Current Oncology Reports. 24(8):985–993https://doi.org/10.1007/s11912-022-01260-w

Wu T, Zhang ZW, Li S et al (2020) Characterization of global 5-hydroxymethylcytosine in pediatric posterior fossa ependymoma. Clinical epigenetics. 12(1):19https://doi.org/10.1186/s13148-020-0809-8

Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica. 131(6):803–820.https://doi.org/10.1007/s00401-016-1545-1

Bakes E, Cheng R, Mañucat-Tan N, Ramaswamy V, Hansford JR (2025) Advances in molecular prognostication and treatments in ependymoma. Journal of neuro-oncology. 172(2):317–326.https://doi.org/10.1007/s11060-024-04923-9

Łastowska M, Matyja E, Sobocińska A et al (2021) Transcriptional profiling of paediatric ependymomas identifies prognostically significant groups. The journal of pathology Clinical research 7(6):565–576. https://doi.org/10.1002/cjp2.236

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cavalli FMG, Hübner JM, Sharma T et al (2018) Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol 136(2):227–237. https://doi.org/10.1007/s00401-018-1888-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng D, Zhuo Z, Du J et al (2024) A Fully Automated Deep-Learning Model for Predicting the Molecular Subtypes of Posterior Fossa Ependymomas Using T2-Weighted Images. Clinical cancer research: an official journal of the American Association for Cancer Research. 30(1):150–158https://doi.org/10.1158/1078-0432.Ccr-23-1461

Rudà R, Reifenberger G, Frappaz D et al (2018) EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro-oncology 20(4):445–456. https://doi.org/10.1093/neuonc/nox166

Article  PubMed  Google Scholar 

Pajtler KW, Wen J, Sill M et al (2018) Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 136(2):211–226. https://doi.org/10.1007/s00401-018-1877-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20(2):143–157. https://doi.org/10.1016/j.ccr.2011.07.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kresbach C, Neyazi S, Schüller U (2022) Updates in the classification of ependymal neoplasms: The 2021 WHO Classification and beyond. Brain pathology (Zurich, Switzerland) 32(4):e13068https://doi.org/10.1111/bpa.13068

Cui Z, Ren G, Cai R et al (2022) MRI-based texture analysis for differentiate between pediatric posterior fossa ependymoma type A and B. European journal of radiology. https://doi.org/10.1016/j.ejrad.2022.110288

Yonezawa U, Karlowee V, Amatya VJ et al (2020) Radiology Profile as a Potential Instrument to Differentiate Between Posterior Fossa Ependymoma (PF-EPN) Group A and B. World neurosurgery. 140:e320-https://doi.org/10.1016/j.wneu.2020.05.063

Kerleroux B, Cottier JP, Janot K, Listrat A, Sirinelli D, Morel B (2020) Posterior fossa tumors in children: Radiological tips & tricks in the age of genomic tumor classification and advance MR technology. Journal of neuroradiology = Journal de neuroradiologie. 47(1):46–53. https://doi.org/10.1016/j.neurad.2019.08.002

Mata-Mbemba D, Donnellan J, Krishnan P, Shroff M, Muthusami P (2018) Imaging Features of Common Pediatric Intracranial Tumours: A Primer for the Radiology Trainee. Canadian Association of Radiologists journal = Journal l’Association canadienne des radiologistes. 69(1):105–117. https://doi.org/10.1016/j.carj.2017.10.006

Raybaud C, Ramaswamy V, Taylor MD, Laughlin S (2015) Posterior fossa tumors in children: developmental anatomy and diagnostic imaging. Childs Nerv Syst 31(10):1661–1676. https://doi.org/10.1007/s00381-015-2834-z

Article  PubMed  Google Scholar 

Demirel E, Dilek O (2025) Utilizing radiomics of peri-lesional edema in T2-FLAIR subtraction digital images to distinguish high-grade glial tumors from brain metastasis. J Magn Reson Imaging 61(4):1728–1737. https://doi.org/10.1002/jmri.29572

Article  PubMed  Google Scholar 

Mayerhoefer ME, Szomolanyi P, Jirak D et al (2009) Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study. Investigative radiology. 44(7):405–411. https://doi.org/10.1097/RLI.0b013e3181a50a66

Saha A, Harowicz MR, Mazurowski MA (2018) Breast cancer MRI radiomics: an overview of algorithmic features and impact of inter-reader variability in annotating tumors. Med Phys 45(7):3076–3085. https://doi.org/10.1002/mp.12925

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Ko CC, Chen JH (2020) Radiomics approach for prediction of recurrence in non-functioning pituitary macroadenomas. Front Oncol. https://doi.org/10.3389/fonc.2020.590083

Article  PubMed  PubMed Central  Google Scholar 

Zhou M, Scott J, Chaudhury B et al (2018) Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. AJNR American journal of neuroradiology. 39(2):208–216.https://doi.org/10.3174/ajnr.A5391

Tang T, Wu Y, Dong X, Zhai X (2025) Multimodal MRI radiomics enhances epilepsy prediction in pediatric low-grade glioma patients. J Neuro-oncol 174(2):431–437. https://doi.org/10.1007/s11060-025-05073-2

Article  Google Scholar 

Wei J, Yang G, Hao X et al (2019) A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. European radiology. 29(2):877–888. https://doi.org/10.1007/s00330-018-5575-z

Ma X, Qian X, Wang Q et al (2023) Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma. Radiol Med 128(11):1296–1309. https://doi.org/10.1007/s11547-023-01704-8

Article  PubMed  PubMed Central  Google Scholar 

Xue K, Liu L, Liu Y, Guo Y, Zhu Y, Zhang M (2022) Radiomics model based on multi-sequence MR images for predicting preoperative immunoscore in rectal cancer. Radiol Med 127(7):702–713. https://doi.org/10.1007/s11547-022-01507-3

Article  PubMed  Google Scholar 

Yuan L, Lu J, Shu X et al (2025) The classification of vestibular schwannoma (VS) and cerebellopontine angle meningioma (CPAM) based on multimodal magnetic resonance imaging analysis. Diagnostics. https://doi.org/10.3390/diagnostics15091157

Article  PubMed  PubMed Central  Google Scholar 

He A, Wang P, Zhu A, Liu Y, Chen J, Liu L (2022) Predicting IDH mutation status in low-grade gliomas based on optimal radiomic features combined with multi-sequence magnetic resonance imaging. Diagnostics. https://doi.org/10.3390/diagnostics12122995

Article  PubMed  PubMed Central  Google Scholar 

Wu J, Xia Y, Wang X (2023) uRP: An integrated research platform for one-stop analysis of medical images. Front Radiol. https://doi.org/10.3389/fradi.2023.1153784

Article  PubMed  PubMed Central  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research. 77(21):e104-https://doi.org/10.1158/0008-5472.Can-17-0339

Raihan MJ, Khan MA, Kee SH, Nahid AA (2023) Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP. Sci Rep 13(1):6263. https://doi.org/10.1038/s41598-023-33525-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim KY, Lee K, Shim Y et al (2022) Molecular subtyping of ependymoma and prognostic impact of Ki-67. Brain tumor pathology 39(1):1–13. https://doi.org/10.1007/s10014-021-00417-y

Article  CAS  PubMed  Google Scholar 

Träger M, Schweizer L, Pérez E et al (2023) Adult intracranial ependymoma-relevance of DNA methylation profiling for diagnosis, prognosis, and treatment. Neuro-Oncology 25(7):1286–1298.https://doi.org/10.1093/neuonc/noad030

Witt H, Gramatzki D, Hentschel B et al (2018) DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro-oncol 20(12):1616–1624. https://doi.org/10.1093/neuonc/noy118

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif