Sun H, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183: 109119.
Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.
Article CAS PubMed PubMed Central Google Scholar
Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: Cardiovascular disease in diabetes mellitus. Circulation. 2016;133(24):2459–502.
Article CAS PubMed PubMed Central Google Scholar
Kikkawa U, Matsuzaki H, Yamamoto T. Protein kinase Cδ(PKC δ): activation mechanisms and functions. J Biochem. 2002;132(6):831–9.
Article CAS PubMed Google Scholar
Miao LN, et al. Role and mechanism of PKC-δ for cardiovascular disease: current status and perspective. Front Cardiovasc Med. 2022;9(February):1–16.
Lien CF, Chen SJ, Tsai MC, Lin CS. Potential role of protein kinase C in the pathophysiology of diabetes-associated atherosclerosis. Front Pharmacol. 2021;12:1–12.
Xu S, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73(3):924–67.
Article CAS PubMed Google Scholar
Davignon J, Ganz P. Role of endothelial dysfunction in Atherosclerosis. Circulation. 2004;109(23 suppl 1):III–27.
Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in Atherosclerosis. Curr Atheroscler Rep. 2017;19(11):42.
Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation Res. 2017;120(4):713–35.
Paone S, Baxter AA, Hulett MD, Poon IKH. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell Mol Life Sci. 2019;76(6):1093–106.
Article CAS PubMed Google Scholar
Wu CM, Zheng L, Wang Q, Hu YW. The emerging role of cell senescence in atherosclerosis. Clin Chem Lab Med. 2020;59(1):27–38.
Klymenko K, Novokhatska T, Kizub I, Parshikov A, Dosenko V, Soloviev A. PKC-δ isozyme gene silencing restores vascular function in diabetic rat. J Basic Clin Physiol Pharmacol. 2014;25:1–9.
Ishida K, Matsumoto T, Taguchi K, Kamata K, Kobayashi T. Protein kinase C delta contributes to increase in EP3 agonist-induced contraction in mesenteric arteries from type 2 diabetic Goto-Kakizaki rats. Pflugers Arch. 2012;463(4):593–602.
Article CAS PubMed Google Scholar
Mondrinos MJ, et al. Pulmonary endothelial protein kinase C-Delta (PKCδ) regulates neutrophil migration in acute lung inflammation. Am J Pathol. 2014;184(1):200–13.
Article CAS PubMed PubMed Central Google Scholar
Ahn JJ, Jung JP, Park SE, Lee M, Kwon B, Cho HR. Involvement of protein kinase C-δ in vascular permeability in acute lung injury. Immune Netw. 2015;15(4):206.
Article PubMed PubMed Central Google Scholar
Soroush F, et al. Protein kinase C-Delta (PKCδ) tyrosine phosphorylation is a critical regulator of neutrophil-endothelial cell interaction in inflammation. Shock. 2019;51(5):538–47.
Article CAS PubMed PubMed Central Google Scholar
Tang Y, et al. Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage. J Neuroinflammation. 2018;15(1):1–12.
Kim J-H, Kim JH, Jun H-O, Yu YS, Kim K-W. Inhibition of protein kinase C delta attenuates blood-retinal barrier breakdown in diabetic retinopathy. Am J Pathol. 2010;176(3):1517–24.
Article CAS PubMed PubMed Central Google Scholar
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;176(1):139–48.
Motley ED, Eguchi K, Patterson MM, Palmer PD, Suzuki H, Eguchi S. Mechanism of endothelial nitric oxide synthase phosphorylation and activation by thrombin. Hypertension. 2007;49(3):577–83.
Article CAS PubMed Google Scholar
Fetterman JL, et al. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling. Atherosclerosis. 2016;247:207–17.
Article CAS PubMed PubMed Central Google Scholar
Bharath LP, et al. Endothelial cell autophagy maintains shear stress-induced nitric oxide generation via glycolysis-dependent purinergic signaling to endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol. 2017;37(9):1646–56.
Article CAS PubMed PubMed Central Google Scholar
Kumar S, Sud N, Fonseca FV, Hou Y, Black SM. Shear stress stimulates nitric oxide signaling in pulmonary arterial endothelial cells via a reduction in catalase activity: Role of protein kinase Cδ. Am J Physiol Lung Cell Mol Physiol. 2010;298(1):L105-16.
Article CAS PubMed Google Scholar
Sud N, Black SM. Endothelin-1 impairs nitric oxide signaling in endothelial cells through a protein kinase cδ-dependent activation of STAT3 and decreased endothelial nitric oxide synthase expression. DNA Cell Biol. 2009;28(11):543–53.
Article CAS PubMed PubMed Central Google Scholar
Sud N, Kumar S, Wedgwood S, Black SM. Modulation of PKCδ signaling alters the shear stress-mediated increases in endothelial nitric oxide synthase transcription: role of STAT3. Am J Physiol Lung Cell Mol Physiol. 2009;296(3):519–26.
Cosentino F, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: Role of protein kinase C and reactive oxygen species. Circulation. 2003;107(7):1017–23.
Article CAS PubMed Google Scholar
Panicker SR, Biswas I, Giri H, Cai X. PKC (Protein Kinase C)-δ modulates at (Antithrombin) signaling in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2020;4:1748–62.
Khamaisi M, Dahan R, Hamed S, Abassi Z, Heyman SN, Raz I. Role of protein kinase C in the expression of endothelin converting enzyme-1. Endocrinology. 2009;150(3):1440–9.
Article CAS PubMed Google Scholar
Park JY, et al. Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes. 2000;49(7):1239–48.
Article CAS PubMed Google Scholar
Gaudreault N, Perrin RM, Guo M, Clanton CP, Wu MH, Yuan SY. Counter regulatory effects of PKCbetaII and PKCdelta on coronary endothelial permeability. Arterioscler Thromb Vasc Biol. 2008;28(8):1527–33.
Article CAS PubMed PubMed Central Google Scholar
Kim YA, et al. Role of PKCβII and PKCδ in blood-brain barrier permeability during aglycemic hypoxia. Neurosci Lett. 2010;468(3):254–8.
Article CAS PubMed Google Scholar
Tinsley JH, Teasdale NR, Yuan SY. Involvement of PKCδ and PKD in pulmonary microvascular endothelial cell hyperpermeability. Am J Physiol Cell Physiol. 2004;286(1):55–61.
Xie L, et al. Regulation of thrombin-induced lung endothelial cell barrier disruption by protein kinase C delta. PLoS ONE. 2016;11(7):1–17.
Sheats MK, Sung EJ, Adler KB, Jones SL. In vitro neutrophil migration requires protein kinase C-Delta (δ-PKC)-Mediated Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) phosphorylation. Inflammation. 2015;38(3):1126–41.
Article CAS PubMed Google Scholar
van den Oever IA, Raterman HG, Nurmohamed MT, Simsek S. Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators Inflamm. 2010;2010:1–15.
Rahman A, et al. Protein Kinase C-δ regulates thrombin-induced ICAM-1 gene expression in endothelial cells via activation of p38 mitogen-activated protein kinase. Mol Cell Biol. 2001;21(16):5554–65.
Article CAS PubMed PubMed Central Google Scholar
Minami T, Abid RM, Zhang J, King G, Kodama T, Aird WC. Thrombin stimulation of vascular adhesion molecule-1 in endothelial cells is mediated by protein kinase C (PKC)-δ-NF-κB and PKC-ζ-GATA signaling pathways. J Biol Chem. 2003;278(9):6976–84.
Article CAS PubMed Google Scholar
Shimamura K, Takashiro Y, Akiyama N, Hirabayashi T, Murayama T. Expression of adhesion molecules by sphingosine 1-phosphate and histamine in endothelial cells. Eur J Pharmacol. 2004;486(2):141–50.
Comments (0)