Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR (2019) Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol 7:4. https://doi.org/10.3389/fcell.2019.00004
Article PubMed PubMed Central Google Scholar
Bach DH, Lee SK, Sood AK (2019) Circular RNAs in cancer. Mol Ther Nucleic Acids 16:118–129. https://doi.org/10.1016/j.omtn.2019.02.005
Article CAS PubMed PubMed Central Google Scholar
Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells 10. https://doi.org/10.3390/cells10071715
Bernardi G (2021) The “genomic code”: DNA pervasively moulds chromatin structures leaving no room for “junk”. Life (Basel) 11. https://doi.org/10.3390/life11040342
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492
Chen H, Yang R, Xing L, Wang B, Liu D, Ou X, Deng Y, Jiang R, Chen J (2022) Hypoxia-inducible CircPFKFB4 promotes breast cancer progression by facilitating the CRL4(DDB2) E3 ubiquitin ligase-mediated p27 degradation. Int J Biol Sci 18:3888–3907. https://doi.org/10.7150/ijbs.72842
Article PubMed PubMed Central Google Scholar
Chen J, Chen J, Huang J, Li Z, Gong Y, Zou B, Liu X, Ding L, Li P, Zhu Z, Zhang B, Guo H, Cai C, Li J (2019) HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Aging (Albany NY) 11:10839–10860. https://doi.org/10.18632/aging.102488
Article CAS PubMed Google Scholar
Chen ZQ, Zuo XL, Cai J, Zhang Y, Han GY, Zhang L, Ding WZ, Wu JD, Wang XH (2023) Hypoxia-associated circPRDM4 promotes immune escape via HIF-1α regulation of PD-L1 in hepatocellular carcinoma. Exp Hematol Oncol 12:17. https://doi.org/10.1186/s40164-023-00378-2
Article CAS PubMed PubMed Central Google Scholar
Du Q, Han J, Gao S, Zhang S, Pan Y (2020) Hypoxia-induced circular RNA hsa_circ_0008450 accelerates hepatocellular cancer progression via the miR-431/AKAP1 axis. Oncol Lett 20:388. https://doi.org/10.3892/ol.2020.12251
Article PubMed PubMed Central Google Scholar
Feng D, Xu Y, Hu J, Zhang S, Li M, Xu L (2020) A novel circular RNA, hsa-circ-0000211, promotes lung adenocarcinoma migration and invasion through sponging of hsa-miR-622 and modulating HIF1-α expression. Biochem Biophys Res Commun 521:395–401. https://doi.org/10.1016/j.bbrc.2019.10.134
Article CAS PubMed Google Scholar
Fu Z, Zhang P, Zhang R, Zhang B, Xiang S, Zhang Y, Luo Z, Huang C (2023) Novel hypoxia-induced HIF1α-circTDRD3-positive feedback loop promotes the growth and metastasis of colorectal cancer. Oncogene 42:238–252. https://doi.org/10.1038/s41388-022-02548-8
Article CAS PubMed Google Scholar
Gao L, Dou ZC, Ren WH, Li SM, Liang X, Zhi KQ (2019) CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK(½)/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis 10:745. https://doi.org/10.1038/s41419-019-1971-9
Article CAS PubMed PubMed Central Google Scholar
Ge SX (2017) Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development. BMC Genom 18:200. https://doi.org/10.1186/s12864-017-3566-0
Hammarlund EU, Flashman E, Mohlin S, Licausi F (2020) Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science 370. https://doi.org/10.1126/science.aba3512
Huang C, Yu W, Wang Q, Huang T, Ding Y (2021) CircANTXR1 contributes to the malignant progression of hepatocellular carcinoma by promoting proliferation and metastasis. J Hepatocell Carcinoma 8:1339–1353. https://doi.org/10.2147/jhc.S317256
Article CAS PubMed PubMed Central Google Scholar
Huang D, Li C, Zhang H (2014) Hypoxia and cancer cell metabolism. Acta Biochim Biophys Sin Shanghai 46:214–219. https://doi.org/10.1093/abbs/gmt148
Article CAS PubMed Google Scholar
Huang Q, Yang J, Goh RMW, You M, Wang L, Ma Z (2022) Hypoxia-induced circRNAs in human diseases: from mechanisms to potential applications. Cells 11. https://doi.org/10.3390/cells11091381
Huang R, Zong X (2017) Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: mechanisms in cancer progression. Crit Rev Oncol Hematol 115:13–22. https://doi.org/10.1016/j.critrevonc.2017.04.005
Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ (2022) Hypoxia signaling: challenges and opportunities for cancer therapy. Semin Cancer Biol 85:185–195. https://doi.org/10.1016/j.semcancer.2021.10.002
Article CAS PubMed Google Scholar
Janji B, Chouaib S (2022) The promise of targeting hypoxia to improve cancer immunotherapy: mirage or reality? Front Immunol 13:880810. https://doi.org/10.3389/fimmu.2022.880810
Article CAS PubMed PubMed Central Google Scholar
Jiao B, Liu S, Zhao H, Zhuang Y, Ma S, Lin C, Hu J, Liu X (2022) Hypoxia-responsive circRNAs: a novel but important participant in non-coding RNAs ushered toward tumor hypoxia. Cell Death Dis 13:666. https://doi.org/10.1038/s41419-022-05114-y
Article CAS PubMed PubMed Central Google Scholar
Jin Y, Che X, Qu X, Li X, Lu W, Wu J, Wang Y, Hou K, Li C, Zhang X, Zhou J, Liu Y (2020) CircHIPK3 promotes metastasis of gastric cancer via miR-653-5p/miR-338-3p-NRP1 axis under a long-term hypoxic microenvironment. Front Oncol 10:1612. https://doi.org/10.3389/fonc.2020.01612
Article PubMed PubMed Central Google Scholar
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 18:157. https://doi.org/10.1186/s12943-019-1089-9
Article PubMed PubMed Central Google Scholar
Lai Q, Li W, Wang H, Xu S, Deng Z (2022) Emerging role of circRNAs in cancer under hypoxia. Oncol Lett 24:372. https://doi.org/10.3892/ol.2022.13492
Article CAS PubMed PubMed Central Google Scholar
Lau KW, Tian YM, Raval RR, Ratcliffe PJ, Pugh CW (2007) Target gene selectivity of hypoxia-inducible factor-alpha in renal cancer cells is conveyed by post-DNA-binding mechanisms. Br J Cancer 96:1284–1292. https://doi.org/10.1038/sj.bjc.6603675
Article CAS PubMed PubMed Central Google Scholar
Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, Hu Y, Qiu J, Pu L, Tang J, Wang X (2021) HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther 6:76. https://doi.org/10.1038/s41392-020-00453-8
Article CAS PubMed PubMed Central Google Scholar
Li Q, Pan X, Zhu D, Deng Z, Jiang R, Wang X (2019) Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology 70:1298–1316. https://doi.org/10.1002/hep.30671
Article CAS PubMed Google Scholar
Maldonado V, Melendez-Zajgla J (2022) The role of hypoxia-associated long non-coding RNAs in breast cancer. Cells 11. https://doi.org/10.3390/cells11101679
Ojha R, Nandani R, Chatterjee N, Prajapati VK (2018) Emerging role of circular RNAs as potential biomarkers for the diagnosis of human diseases. Adv Exp Med Biol 1087:141–157. https://doi.org/10.1007/978-981-13-1426-1_12
Article CAS PubMed Google Scholar
Ouyang X, Yao L, Liu G, Liu S, Gong L, Xiao Y (2021) Loss of androgen receptor promotes HCC invasion and metastasis via activating circ-LNPEP/miR-532-3p/RAB9A signal under hypoxia. Biochem Biophys Res Commun 557:26–32. https://doi.org/10.1016/j.bbrc.2021.02.120
Article CAS PubMed Google Scholar
Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352:175–180. https://doi.org/10.1126/science.aaf4405
Article CAS PubMed PubMed Central Google Scholar
Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117:e207–e217. https://doi.org/10.1182/blood-2010-10-314427
Article CAS PubMed PubMed Central Google Scholar
Schödel J, Ratcliffe PJ (2019) Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 15:641–659. https://doi.org/10.1038/s41581-019-0182-z
Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354. https://doi.org/10.1038/nrm1366
Article CAS PubMed Google Scholar
Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56. https://doi.org/10.1016/j.gde.2009.10.009
Article CAS PubMed Google Scholar
Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671. https://doi.org/10.1172/jci67230
Comments (0)