Lopes A, Chammas R, Iyeyasu H (2013) Oncologia para a graduação. Lemar, São Paulo
Leonardi G, Falzone L, Salemi R, Zangh� A, Spandidos D, Mccubrey J, et al. Cutaneous melanoma: from pathogenesis to therapy (Review). Int J Oncol 2018. https://doi.org/10.3892/ijo.2018.4287
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N et al (2022) European consensus-based interdisciplinary guideline for melanoma. Part 1: diagnostics: Update 2022. Eur J Cancer 170:236–55. https://doi.org/10.1016/j.ejca.2022.03.008
da Silva GB, Yamauchi MA, Zanini D, Bagatini MD (2022) Novel possibility for cutaneous melanoma treatment by means of rosmarinic acid action on purinergic signaling. Purinergic Signal 18:61–81. https://doi.org/10.1007/s11302-021-09821-7
Article CAS PubMed Google Scholar
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J (2023) Spice-derived phenolic compounds: potential for skin cancer prevention and therapy. Molecules 28:6251. https://doi.org/10.3390/molecules28176251
Article CAS PubMed PubMed Central Google Scholar
Murai T, Matsuda S (2023) The chemopreventive effects of chlorogenic acids, phenolic compounds in coffee, against inflammation, cancer, and neurological diseases. Molecules 28:2381. https://doi.org/10.3390/molecules28052381
Article CAS PubMed PubMed Central Google Scholar
Mahmoud MA, Okda TM, Omran GA, Abd-Alhaseeb MM (2021) Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation. J Appl Biomed 19:202–9. https://doi.org/10.32725/jab.2021.024
Messeha SS, Zarmouh NO, Asiri A, Soliman KFA (2020) Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur J Pharmacol 885:173419. https://doi.org/10.1016/j.ejphar.2020.173419
Article CAS PubMed PubMed Central Google Scholar
Abdelwahab T, Abdelhamed R, Ali E, Mansour N, Abdalla M (2021) Evaluation of silver nanoparticles caffeic acid complex compound as new potential therapeutic agent against cancer incidence in mice. Asian Pacific J Cancer Prev 22:3189–201. https://doi.org/10.31557/APJCP.2021.22.10.3189
Tseng J-C, Wang B-J, Wang Y-P, Kuo Y-Y, Chen J-K, Hour T-C et al (2023) Caffeic acid phenethyl ester suppresses EGFR/FAK/Akt signaling, migration, and tumor growth of prostate cancer cells. Phytomedicine 116:154860. https://doi.org/10.1016/j.phymed.2023.154860
Article CAS PubMed Google Scholar
Chen C, Kuo Y-H, Lin C-C, Chao C-Y, Pai M-H, Chiang EPI et al (2020) Decyl caffeic acid inhibits the proliferation of colorectal cancer cells in an autophagy-dependent manner in vitro and in vivo. PLoS One 15:e0232832. https://doi.org/10.1371/journal.pone.0232832
Article CAS PubMed PubMed Central Google Scholar
Caetano AR, Oliveira RD, Celeiro SP, Freitas AS, Cardoso SM, Gonçalves MST et al (2023) Phenolic compounds contribution to portuguese propolis anti-melanoma activity. Molecules 28:3107. https://doi.org/10.3390/molecules28073107
Article CAS PubMed PubMed Central Google Scholar
Kichina JV, Maslov A, Kandel ES (2023) PAK1 and therapy resistance in melanoma. Cells 12:2373. https://doi.org/10.3390/cells12192373
Article CAS PubMed PubMed Central Google Scholar
Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, et al. ATP and cancer immunosurveillance. EMBO J 2021;40. https://doi.org/10.15252/embj.2021108130.
Vultaggio-Poma V, Falzoni S, Salvi G, Giuliani AL, Di Virgilio F (2022) Signalling by extracellular nucleotides in health and disease. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1869:119237. https://doi.org/10.1016/j.bbamcr.2022.119237
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS (2021) Purinergic signaling in the modulation of redox biology. Redox Biol 47:102137. https://doi.org/10.1016/j.redox.2021.102137
Article CAS PubMed PubMed Central Google Scholar
Nakamura H, Takada K (2021) Reactive oxygen species in cancer: current findings and future directions. Cancer Sci 112:3945–3952. https://doi.org/10.1111/cas.15068
Article CAS PubMed PubMed Central Google Scholar
da Silva JLG, Viana AR, Passos DF, Krause LMF, Miron VV, Schetinger MRC et al (2023) Istradefylline modulates purinergic enzymes and reduces malignancy-associated factors in B16F10 melanoma cells. Purinergic Signal 19:633–650. https://doi.org/10.1007/s11302-022-09909-8
Article CAS PubMed Google Scholar
Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S et al (2023) Rosmarinic acid and its derivatives: current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 162:114687. https://doi.org/10.1016/j.biopha.2023.114687
Article CAS PubMed Google Scholar
Azhar MDK, Anwar S, Hasan GM, Shamsi A, Islam A, Parvez S et al (2023) Comprehensive insights into biological roles of rosmarinic acid: implications in diabetes, cancer and neurodegenerative diseases. Nutrients 15:4297. https://doi.org/10.3390/nu15194297
Article CAS PubMed PubMed Central Google Scholar
Osakabe N (2003) Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25:549–557. https://doi.org/10.1093/carcin/bgh034
Huang L, Chen J, Quan J, Xiang D (2021) Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/EGFR/AKT/GSK3β axis. Bioengineered 12:3065–3076. https://doi.org/10.1080/21655979.2021.1941699
Article CAS PubMed PubMed Central Google Scholar
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31. https://doi.org/10.1016/j.immuni.2017.06.020
Article CAS PubMed Google Scholar
Strassheim D, Verin A, Batori R, Nijmeh H, Burns N, Kovacs-Kasa A et al (2020) P2Y purinergic receptors, endothelial dysfunction, and cardiovascular diseases. Int J Mol Sci 21:6855. https://doi.org/10.3390/ijms21186855
Article CAS PubMed PubMed Central Google Scholar
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MdI, et al. Therapeutic implications of caffeic acid in cancer and neurological diseases. Front Oncol 2022;12. https://doi.org/10.3389/fonc.2022.860508.
Kudugunti SK, Vad NM, Whiteside AJ, Naik BU, Yusuf MohdA, Srivenugopal KS et al (2010) Biochemical mechanism of caffeic acid phenylethyl ester (CAPE) selective toxicity towards melanoma cell lines. Chem Biol Interact 188:1–14. https://doi.org/10.1016/j.cbi.2010.05.018
Article CAS PubMed PubMed Central Google Scholar
Pelinson LP, Assmann CE, Palma TV, da Cruz IBM, Pillat MM, Mânica A et al (2019) Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol Biol Rep 46:2085–2092. https://doi.org/10.1007/s11033-019-04658-1
Article CAS PubMed Google Scholar
Kimsa-Dudek M, Synowiec-Wojtarowicz A, Krawczyk A, Kosowska A, Kimsa-Furdzik M, Francuz T (2022) The apoptotic effect of caffeic or chlorogenic acid on the C32 cells that have simultaneously been exposed to a static magnetic field. Int J Mol Sci 23:3859. https://doi.org/10.3390/ijms23073859
Article CAS PubMed PubMed Central Google Scholar
Anwar J, Spanevello RM, Pimentel VC, Gutierres J, Thomé G, Cardoso A et al (2013) Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats. Food Chem Toxicol 56:459–466. https://doi.org/10.1016/j.fct.2013.02.030
Article CAS PubMed Google Scholar
Tao DL, Tassi Yunga S, Williams CD, McCarty OJT (2021) Aspirin and antiplatelet treatments in cancer. Blood 137:3201–3211. https://doi.org/10.1182/blood.2019003977
Article CAS PubMed PubMed Central Google Scholar
Castro MFV, Stefanello N, Assmann CE, Baldissarelli J, Bagatini MD, da Silva AD et al (2021) Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sci 277:119421. https://doi.org/10.1016/j.lfs.2021.119421
Article CAS PubMed Google Scholar
Valdespino-Gómez VM, Valdespino-Castillo PM, Valdespino-Castillo VE (2015) Interacción de las vías de señalización intracelulares participantes en la proliferación celular: potencial blanco de intervencionismo terapéutico. Cir Cir 83:165–174. https://doi.org/10.1016/j.circir.2015.04.015
Pegoraro A, De Marchi E, Ferracin M, Orioli E, Zanoni M, Bassi C et al (2021) P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death Dis 12:1088. https://doi.org/10.1038/s41419-021-04378-0
Article CAS PubMed PubMed Central Google Scholar
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, et al. P2X7 in cancer: from molecular mechanisms to therapeutics. Front Pharmacol 2020;11. https://doi.org/10.3389/fphar.2020.00793.
De Marchi E, Orioli E, Pegoraro A, Sangaletti S, Portararo P, Curti A et al (2019) The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene 38:3636–3650. https://doi.org/10.1038/s41388-019-0684-y
Comments (0)