Tan H, Tumilty S, Chapple C, Liu L, McDonough S, Yin H (2019) Understanding acupoint sensitization: a narrative review on phenomena, potential mechanism, and clinical application. Evid Based Complement Alternat Med 2019:6064358. https://doi.org/10.1155/2019/6064358
Article PubMed PubMed Central Google Scholar
Ding G, Zhang D, Huang M, Wang L, Yao W (2012) The function of collagen and mast cells at acupoints. In: Xia Y, Ding G, Wu G (eds) The function of collagen and mast cells at acupoints, Eds. Springer, Springer Location, pp 53–87
Burnstock G (2009) Acupuncture: a novel hypothesis for the involvement of purinergic signalling. Med Hypotheses 73:470–472. https://doi.org/10.1016/j.mehy.2009.05.031
Article CAS PubMed Google Scholar
Vincenzi F, Pasquini S, Borea PA, Varani K (2020) Targeting adenosine receptors: a potential pharmacological avenue for acute and chronic pain. Int J Mol Sci 21. https://doi.org/10.3390/ijms21228710
Huang M, Wang X, Xing B, Yang H, Sa Z, Zhang D (2018) Critical roles of TRPV2 channels, histamine h1 and adenosine A1 receptors in the initiation of acupoint signals for acupuncture analgesia. Sci Rep 8:6523–6533. https://doi.org/10.1038/s41598-018-24654-y
Article CAS PubMed PubMed Central Google Scholar
Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13:883–888. https://doi.org/10.1038/nn.2562
Article CAS PubMed PubMed Central Google Scholar
Mikolajewicz N, Mohammed A, Morris M, Komarova SV (2018) Mechanically stimulated ATP release from mammalian cells: systematic review and meta-analysis. J Cell Sci 131:223354. https://doi.org/10.1242/jcs.223354
Wang LN, Wang XZ, Li YJ, Li BR, Huang M, Wang XY (2022) Activation of subcutaneous mast cells in acupuncture points triggers analgesia. Cells 11:809. https://doi.org/10.3390/cells11050809
Article CAS PubMed PubMed Central Google Scholar
Wang LN, Grygorcyk R, Gu QB, Schwarz (2022) Cellular mechanisms in acupuncture effects In: Xia Y, D.G. H, Shen XY, Wang YQ, (ed) Advanced Acupuncture Research: from Bench to Bedside Eds edn. Springer, Berlin, 225–247.
Shen D, Zheng YW, Zhang D, Shen XY, Wang LN (2021) Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats. Purinergic Signalling 17:411–424. https://doi.org/10.1007/s11302-021-09777-8
Article CAS PubMed PubMed Central Google Scholar
Zuo WM, Li YJ, Cui KY, Shen D, Zhang D, Zheng YW (2023) The real-time detection of acupuncture-induced extracellular ATP mobilization in acupoints and exploration of its role in acupuncture analgesia. Purinergic Signalling 19:69–85. https://doi.org/10.1007/s11302-021-09833-3
Article CAS PubMed Google Scholar
Herbert Z, Matthias Z, Norbert S (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signalling 8:437–502. https://doi.org/10.1007/s11302-012-9309-4
Vongtau HO, Lavoie EG, Sévigny J, Molliver DC (2011) Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception. Neuroscience 193:387–398. https://doi.org/10.1016/j.neuroscience.2011.07.044
Article CAS PubMed Google Scholar
Ma L, Thu T, Ren Y, Dirksen RT, Liu X (2016) Neuronal ntpdase3 mediates extracellular ATP degradation in trigeminal nociceptive pathway. Plos One 11(10):e0164028. https://doi.org/10.1371/journal.pone.0164028
Article CAS PubMed PubMed Central Google Scholar
Liu X, Yu L, Wang Q, Pelletier J, Fausther M, Sevigny J (2012) Expression of ecto-atpase ntpdase2 in human dental pulp. J Dent Res 91:261–267. https://doi.org/10.1177/0022034511431582
Article CAS PubMed PubMed Central Google Scholar
Zheng Y, Zuo W, Shen D, Cui K, Huang M, Zhang D (2021) Mechanosensitive TRPV4 channel-induced extracellular ATP accumulation at the acupoint mediates acupuncture analgesia of ankle arthritis in rats. Life-Basel 11:513. https://doi.org/10.3390/life11060513
Article CAS PubMed PubMed Central Google Scholar
Wang L, Hu L, Grygorczyk R, Shen X, Schwarz W (2015) Modulation of extracellular ATP content of mast cells and drg neurons by irradiation: studies on underlying mechanism of low-level-laser therapy. Mediators Inflamm 2015:630361. https://doi.org/10.1155/2015/630361
Article CAS PubMed PubMed Central Google Scholar
Xu JW, Tang SQ, Lin J, Li YJ, Shen D, Ding GH (2024) Ntpdase1-ATP-p2y2rs axis in the sciatic nerve contributes to acupuncture at “zusanli” (ST36)-induced analgesia in ankle arthritis rats. Brain Res Bull 209:110909. https://doi.org/10.1016/j.brainresbull.2024.110909
Article CAS PubMed Google Scholar
Levesque SA, Lavoie EG, Lecka J, Bigonnesse F, Sevigny J (2007) Specificity of the ecto-atpase inhibitor arl 67156 on human and mouse ectonucleotidases. Br J Pharmacol 152:141–150. https://doi.org/10.1038/sj.bjp.0707361
Article CAS PubMed PubMed Central Google Scholar
Li BR, Li YJ, Xu JW, Huang M, Wang LN, Zhang D (2023) Mast cell-associated serotonin in acupoint contributes to acupuncture analgesia in arthritis rats by mediating ATP release. Front Biosci (Landmark Ed) 28:2801001. https://doi.org/10.31083/j.fbl2801001
Beckenkamp LR, Iser IC, Onzi GR, da Fontoura DMS, Bertoni APS, Sévigny J (2019) Characterization of soluble cd39 (solcd39/ntpdase1) from piggybac nonviral system as a tool to control the nucleotides level. Biochem J 476:1637–1651. https://doi.org/10.1042/bcj20190040
Article CAS PubMed Google Scholar
Kaczmarek E, Koziak K, Sevigny J, Siegel JB, Anrather J, Beaudoin AR (1996) Identification and characterization of cd39 vascular ATP diphosphohydrolase. J Biol Chem 271:33116–33122. https://doi.org/10.1074/jbc.271.51.33116
Article CAS PubMed Google Scholar
Zhang HY, Yan KX, Huang Q, Ma Y, Fang X, Han L (2015) Target tissue ectoenzyme cd39/cd73-expressing foxp3+ regulatory t cells in patients with psoriasis. Clin Exp Dermatol 40:182–191. https://doi.org/10.1111/ced.12497
Article CAS PubMed Google Scholar
Schneider EH, Hofmeister O, Kälble S, Seifert R (2020) Apoptotic and anti-proliferative effect of guanosine and guanosine derivatives in hut-78 t lymphoma cells. Naunyn-Schmiedebergs Arch Pharmacol 393:1251–1267. https://doi.org/10.1007/s00210-020-01864-8
Article CAS PubMed PubMed Central Google Scholar
Goloviznina NA, Xie N, Dandapat A, Iaizzo PA, Kyba M (2020) Prospective isolation of human fibroadipogenic progenitors with cd73. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e04503
von Kügelgen I, Wetter A (2000) Molecular pharmacology of p2y-receptors. Naunyn Schmiedebergs Arch Pharmacol 362:310–323. https://doi.org/10.1007/s002100000310
von Kügelgen I, Hoffmann K (2016) Pharmacology and structure of p2y receptors. Neuropharmacol 104:50–61. https://doi.org/10.1016/j.neuropharm.2015.10.030
Zhang X, Li G (2019) P2y receptors in neuropathic pain. Pharmacol Biochem Behav 186:172788. https://doi.org/10.1016/j.pbb.2019.172788
Article CAS PubMed Google Scholar
Zaparte A, Cappellari AR, Brandao CA, de Souza JB, Borges TJ, Kist LW (2021) P2y(2) receptor activation promotes esophageal cancer cells proliferation via erk1/2 pathway. Eur J Pharmacol 891:173687. https://doi.org/10.1016/j.ejphar.2020.173687
Article CAS PubMed Google Scholar
Li YS, Kuang KY, Yerxa B, Wen Q, Rosskothen H, Fischbarg J (2001) Rabbit conjunctival epithelium transports fluid, and p2y2<sub>2</sub> receptor agonists stimulate cl<sup>-</sup> and fluid secretion. Am J Physiol Cell Physiol 281:C595–C602. https://doi.org/10.1152/ajpcell.2001.281.2.C595
Comments (0)