CD39 activities in the treated acupoints contributed to the analgesic mechanism of acupuncture on arthritis rats

Tan H, Tumilty S, Chapple C, Liu L, McDonough S, Yin H (2019) Understanding acupoint sensitization: a narrative review on phenomena, potential mechanism, and clinical application. Evid Based Complement Alternat Med 2019:6064358. https://doi.org/10.1155/2019/6064358

Article  PubMed  PubMed Central  Google Scholar 

Ding G, Zhang D, Huang M, Wang L, Yao W (2012) The function of collagen and mast cells at acupoints. In: Xia Y, Ding G, Wu G (eds) The function of collagen and mast cells at acupoints, Eds. Springer, Springer Location, pp 53–87

Google Scholar 

Burnstock G (2009) Acupuncture: a novel hypothesis for the involvement of purinergic signalling. Med Hypotheses 73:470–472. https://doi.org/10.1016/j.mehy.2009.05.031

Article  CAS  PubMed  Google Scholar 

Vincenzi F, Pasquini S, Borea PA, Varani K (2020) Targeting adenosine receptors: a potential pharmacological avenue for acute and chronic pain. Int J Mol Sci 21. https://doi.org/10.3390/ijms21228710

Huang M, Wang X, Xing B, Yang H, Sa Z, Zhang D (2018) Critical roles of TRPV2 channels, histamine h1 and adenosine A1 receptors in the initiation of acupoint signals for acupuncture analgesia. Sci Rep 8:6523–6533. https://doi.org/10.1038/s41598-018-24654-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13:883–888. https://doi.org/10.1038/nn.2562

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mikolajewicz N, Mohammed A, Morris M, Komarova SV (2018) Mechanically stimulated ATP release from mammalian cells: systematic review and meta-analysis. J Cell Sci 131:223354. https://doi.org/10.1242/jcs.223354

Article  CAS  Google Scholar 

Wang LN, Wang XZ, Li YJ, Li BR, Huang M, Wang XY (2022) Activation of subcutaneous mast cells in acupuncture points triggers analgesia. Cells 11:809. https://doi.org/10.3390/cells11050809

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang LN, Grygorcyk R, Gu QB, Schwarz (2022) Cellular mechanisms in acupuncture effects In: Xia Y, D.G. H, Shen XY, Wang YQ, (ed) Advanced Acupuncture Research: from Bench to Bedside Eds edn. Springer, Berlin, 225–247.

Shen D, Zheng YW, Zhang D, Shen XY, Wang LN (2021) Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats. Purinergic Signalling 17:411–424. https://doi.org/10.1007/s11302-021-09777-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo WM, Li YJ, Cui KY, Shen D, Zhang D, Zheng YW (2023) The real-time detection of acupuncture-induced extracellular ATP mobilization in acupoints and exploration of its role in acupuncture analgesia. Purinergic Signalling 19:69–85. https://doi.org/10.1007/s11302-021-09833-3

Article  CAS  PubMed  Google Scholar 

Herbert Z, Matthias Z, Norbert S (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signalling 8:437–502. https://doi.org/10.1007/s11302-012-9309-4

Article  CAS  Google Scholar 

Vongtau HO, Lavoie EG, Sévigny J, Molliver DC (2011) Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception. Neuroscience 193:387–398. https://doi.org/10.1016/j.neuroscience.2011.07.044

Article  CAS  PubMed  Google Scholar 

Ma L, Thu T, Ren Y, Dirksen RT, Liu X (2016) Neuronal ntpdase3 mediates extracellular ATP degradation in trigeminal nociceptive pathway. Plos One 11(10):e0164028. https://doi.org/10.1371/journal.pone.0164028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Yu L, Wang Q, Pelletier J, Fausther M, Sevigny J (2012) Expression of ecto-atpase ntpdase2 in human dental pulp. J Dent Res 91:261–267. https://doi.org/10.1177/0022034511431582

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng Y, Zuo W, Shen D, Cui K, Huang M, Zhang D (2021) Mechanosensitive TRPV4 channel-induced extracellular ATP accumulation at the acupoint mediates acupuncture analgesia of ankle arthritis in rats. Life-Basel 11:513. https://doi.org/10.3390/life11060513

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Hu L, Grygorczyk R, Shen X, Schwarz W (2015) Modulation of extracellular ATP content of mast cells and drg neurons by irradiation: studies on underlying mechanism of low-level-laser therapy. Mediators Inflamm 2015:630361. https://doi.org/10.1155/2015/630361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu JW, Tang SQ, Lin J, Li YJ, Shen D, Ding GH (2024) Ntpdase1-ATP-p2y2rs axis in the sciatic nerve contributes to acupuncture at “zusanli” (ST36)-induced analgesia in ankle arthritis rats. Brain Res Bull 209:110909. https://doi.org/10.1016/j.brainresbull.2024.110909

Article  CAS  PubMed  Google Scholar 

Levesque SA, Lavoie EG, Lecka J, Bigonnesse F, Sevigny J (2007) Specificity of the ecto-atpase inhibitor arl 67156 on human and mouse ectonucleotidases. Br J Pharmacol 152:141–150. https://doi.org/10.1038/sj.bjp.0707361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li BR, Li YJ, Xu JW, Huang M, Wang LN, Zhang D (2023) Mast cell-associated serotonin in acupoint contributes to acupuncture analgesia in arthritis rats by mediating ATP release. Front Biosci (Landmark Ed) 28:2801001. https://doi.org/10.31083/j.fbl2801001

Article  CAS  Google Scholar 

Beckenkamp LR, Iser IC, Onzi GR, da Fontoura DMS, Bertoni APS, Sévigny J (2019) Characterization of soluble cd39 (solcd39/ntpdase1) from piggybac nonviral system as a tool to control the nucleotides level. Biochem J 476:1637–1651. https://doi.org/10.1042/bcj20190040

Article  CAS  PubMed  Google Scholar 

Kaczmarek E, Koziak K, Sevigny J, Siegel JB, Anrather J, Beaudoin AR (1996) Identification and characterization of cd39 vascular ATP diphosphohydrolase. J Biol Chem 271:33116–33122. https://doi.org/10.1074/jbc.271.51.33116

Article  CAS  PubMed  Google Scholar 

Zhang HY, Yan KX, Huang Q, Ma Y, Fang X, Han L (2015) Target tissue ectoenzyme cd39/cd73-expressing foxp3+ regulatory t cells in patients with psoriasis. Clin Exp Dermatol 40:182–191. https://doi.org/10.1111/ced.12497

Article  CAS  PubMed  Google Scholar 

Schneider EH, Hofmeister O, Kälble S, Seifert R (2020) Apoptotic and anti-proliferative effect of guanosine and guanosine derivatives in hut-78 t lymphoma cells. Naunyn-Schmiedebergs Arch Pharmacol 393:1251–1267. https://doi.org/10.1007/s00210-020-01864-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goloviznina NA, Xie N, Dandapat A, Iaizzo PA, Kyba M (2020) Prospective isolation of human fibroadipogenic progenitors with cd73. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e04503

von Kügelgen I, Wetter A (2000) Molecular pharmacology of p2y-receptors. Naunyn Schmiedebergs Arch Pharmacol 362:310–323. https://doi.org/10.1007/s002100000310

Article  Google Scholar 

von Kügelgen I, Hoffmann K (2016) Pharmacology and structure of p2y receptors. Neuropharmacol 104:50–61. https://doi.org/10.1016/j.neuropharm.2015.10.030

Article  CAS  Google Scholar 

Zhang X, Li G (2019) P2y receptors in neuropathic pain. Pharmacol Biochem Behav 186:172788. https://doi.org/10.1016/j.pbb.2019.172788

Article  CAS  PubMed  Google Scholar 

Zaparte A, Cappellari AR, Brandao CA, de Souza JB, Borges TJ, Kist LW (2021) P2y(2) receptor activation promotes esophageal cancer cells proliferation via erk1/2 pathway. Eur J Pharmacol 891:173687. https://doi.org/10.1016/j.ejphar.2020.173687

Article  CAS  PubMed  Google Scholar 

Li YS, Kuang KY, Yerxa B, Wen Q, Rosskothen H, Fischbarg J (2001) Rabbit conjunctival epithelium transports fluid, and p2y2<sub>2</sub> receptor agonists stimulate cl<sup>-</sup> and fluid secretion. Am J Physiol Cell Physiol 281:C595–C602. https://doi.org/10.1152/ajpcell.2001.281.2.C595

Article  CAS  PubMed 

Comments (0)

No login
gif