Simultaneous assessment of blood flow and myelin content in the brain white matter with dynamic [11 C]PiB PET: a test-retest study in healthy controls

Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86:883–901.

Article  CAS  PubMed  Google Scholar 

Pantano P, Baron JC, Lebrun-Grandié P, Duquesnoy N, Bousser MG, Comar D. Regional cerebral blood flow and oxygen consumption in human aging. Stroke. 1984;15:635–41.

Article  CAS  PubMed  Google Scholar 

Joris PJ, Mensink RP, Adam TC, Liu TT. Cerebral blood Flow measurements in adults: a review on the effects of Dietary factors and Exercise. Nutrients. 2018;10:530.

Article  PubMed  PubMed Central  Google Scholar 

Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ, Metzger JM. The determination of Regional Cerebral Blood Flow by means of Water labeled with Radioactive Oxygen 15. Radiology. 1969;93:31–40.

Article  CAS  PubMed  Google Scholar 

Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47.

Article  CAS  PubMed  Google Scholar 

Chen YJ, Rosario BL, Mowrey W, Laymon CM, Lu X, Lopez OL, et al. Relative 11 C-PiB delivery as a Proxy of relative CBF: quantitative evaluation using single-Session 15O-Water and 11 C-PiB PET. J Nucl Med. 2015;56:1199–205.

Article  CAS  PubMed  Google Scholar 

Oliveira FPM, Moreira AP, de Mendonça A, Verdelho A, Xavier C, Barroca D, et al. Can 11 C-PiB-PET relative delivery R1 or 11 C-PiB-PET perfusion replace 18F-FDG-PET in the Assessment of Brain Neurodegeneration? JAD. 2018;65:89–97.

Article  PubMed  Google Scholar 

Mak E, Grigorova M, Beresford-Webb J, Malpetti M, Walpert M, Brown S, et al. Measuring cerebral perfusion with [11 C]-PiB R1 in Down syndrome: associations with amyloid burden and longitudinal cognitive decline. Brain Commun. 2021;3:fcaa198.

Article  PubMed  Google Scholar 

Heeman F, Hendriks J, Lopes Alves I, Tolboom N, van Berckel BNM, Yaqub M, et al. Test-retest variability of relative Tracer Delivery Rate as measured by [11 C]PiB. Mol Imaging Biol. 2021;23:335–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stankoff B, Wang Y, Bottlaender M, Aigrot M-S, Dolle F, Wu C, et al. Imaging of CNS myelin by positron-emission tomography. Proc Natl Acad Sci. 2006;103:9304–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stankoff B, Freeman L, Aigrot M-S, Chardain A, Dollé F, Williams A, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11 C]-2-(4′-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol. 2011;69:673–80.

Article  CAS  PubMed  Google Scholar 

Veronese M, Bodini B, García-Lorenzo D, Battaglini M, Bongarzone S, Comtat C, et al. Quantification of [ 11 C]PIB PET for imaging myelin in the human brain: a test–retest reproducibility study in high-resolution research tomography. J Cereb Blood Flow Metab. 2015;35:1771–82.

Article  PubMed  PubMed Central  Google Scholar 

Auvity S, Tonietto M, Caillé F, Bodini B, Bottlaender M, Tournier N, et al. Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11 C-MeDAS, and 11 C-PiB. Eur J Nucl Med Mol Imaging. 2020;47:490–501.

Article  CAS  PubMed  Google Scholar 

Bodini B, Veronese M, García-Lorenzo D, Battaglini M, Poirion E, Chardain A, et al. Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann Neurol. 2016;79:726–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeydan B, Lowe VJ, Schwarz CG, Przybelski SA, Tosakulwong N, Zuk SM, et al. Pittsburgh compound-B PET white matter imaging and cognitive function in late multiple sclerosis. Mult Scler. 2018;24:739–49.

Article  CAS  PubMed  Google Scholar 

Carotenuto A, Giordano B, Dervenoulas G, Wilson H, Veronese M, Chappell Z, et al. [18F]florbetapir PET/MR imaging to assess demyelination in multiple sclerosis. Eur J Nucl Med Mol Imaging. 2020;47:366–78.

Article  CAS  PubMed  Google Scholar 

Monti L, Morbidelli L, Rossi A. Impaired cerebral perfusion in multiple sclerosis: relevance of endothelial factors. Biomark Insights. 2018;13:1177271918774800.

Article  PubMed  PubMed Central  Google Scholar 

De Keyser J, Steen C, Mostert JP, Koch MW. Hypoperfusion of the cerebral white matter in multiple sclerosis: possible mechanisms and pathophysiological significance. J Cereb Blood Flow Metab. 2008;28:1645–51.

Article  PubMed  Google Scholar 

Haider L, Zrzavy T, Hametner S, Höftberger R, Bagnato F, Grabner G, et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139:807–15.

Article  PubMed  PubMed Central  Google Scholar 

Martinez Sosa S, Smith KJ. Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci (Lond). 2017;131:2503–24.

Article  CAS  PubMed  Google Scholar 

Holland CM, Charil A, Csapo I, Liptak Z, Ichise M, Khoury SJ, et al. The relationship between normal cerebral perfusion patterns and white matter lesion distribution in 1,249 patients with multiple sclerosis. J Neuroimaging. 2012;22:129–36.

Article  PubMed  Google Scholar 

Desai RA, Davies AL, Tachrount M, Kasti M, Laulund F, Golay X, et al. Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann Neurol. 2016;79:591–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wuerfel J, Bellmann-Strobl J, Brunecker P, Aktas O, McFarland H, Villringer A, et al. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain. 2004;127:111–9.

Article  PubMed  Google Scholar 

Image based resolution modeling for the HRRT OSEM reconstructions software. | IEEE Conference Publication | IEEE Xplore [Internet]. [cited 2024 Jan 25]. https://ieeexplore.ieee.org/abstract/document/4774188.

Alessio AM, Stearns CW, Tong S, Ross SG, Kohlmyer S, Ganin A, et al. Application and evaluation of a measured spatially variant System Model for PET Image Reconstruction. IEEE Trans Med Imaging. 2010;29:938–49.

Article  PubMed  PubMed Central  Google Scholar 

Turkheimer FE, Brett M, Visvikis D, Cunningham VJ. Multiresolution Analysis of Emission Tomography images in the Wavelet Domain. J Cereb Blood Flow Metab. 1999;19:1189–208.

Article  CAS  PubMed  Google Scholar 

Ikoma Y, Edison P, Ramlackhansingh A, Brooks DJ, Turkheimer FE. Reference Region Automatic extraction in dynamic [11 C]PIB. J Cereb Blood Flow Metab. 2013;33:1725–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified Quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med. 2005;46:1959–72.

CAS  PubMed  Google Scholar 

Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric Imaging of Ligand-Receptor Binding in PET using a simplified reference region model. NeuroImage. 1997;6:279–87.

Article  CAS  PubMed  Google Scholar 

Wu Y, Carson RE. Noise reduction in the simplified reference tissue model for Neuroreceptor Functional Imaging. J Cereb Blood Flow Metab. 2002;22:1440–52.

Article  PubMed  Google Scholar 

Hong YT, Fryer TD. Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: General principle and application to [18F]fluorodeoxyglucose positron emission tomography. NeuroImage. 2010;51:164–72.

Article 

Comments (0)

No login
gif