Meta-analysis of the quantitative assessment of lower extremity motor function in elderly individuals based on objective detection

Man W, Wang S, Yang H. Exploring the spatial-temporal distribution and evolution of population aging and social-economic indicators in China. BMC Public Health. 2021;21(1):966.

Article  PubMed  PubMed Central  Google Scholar 

Suri A, VanSwearingen J, Dunlap P, Redfern MS, Rosso AL, Sejdić E. Facilitators and barriers to real-life mobility in community-dwelling older adults: a narrative review of accelerometry- and global positioning system-based studies. Aging Clin Exp Res. 2022;34(8):1733–46.

Article  PubMed  PubMed Central  Google Scholar 

Fang Z, Wu T, Lv M, Chen M, Zeng Z, Qian J, et al. Effect of traditional plus virtual reality Rehabilitation on Prognosis of Stroke survivors: a systematic review and Meta-analysis of Randomized controlled trials. Am J Phys Med Rehabil. 2022;101(3):217–28.

Article  PubMed  Google Scholar 

Riahi N, Vakorin VA, Menon C. Estimating Fugl-Meyer Upper Extremity Motor score from functional-connectivity measures. IEEE Trans Neural Syst Rehabilitation Engineering: Publication IEEE Eng Med Biology Soc. 2020;28(4):860–8.

Article  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical Res ed). 2021;372:n71.

Google Scholar 

Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int. 2018;121(Pt 1):1027–31.

Article  PubMed  PubMed Central  Google Scholar 

Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clinical Res ed). 2019;366:l4898.

Google Scholar 

Andrade C, Mean Difference. Standardized Mean difference (SMD), and their use in Meta-Analysis: as simple as it gets. J Clin Psychiatry. 2020;81(5).

Xiang G, Wu Q, Wu X, Hao S, Xie L, Li S. Non-invasive ventilation intervention during exercise training in individuals with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2021;64(6):101460.

Article  PubMed  Google Scholar 

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical Res ed). 2003;327(7414):557–60.

Article  Google Scholar 

Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

Article  CAS  PubMed  Google Scholar 

Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical Res ed). 1997;315(7109):629–34.

Article  CAS  Google Scholar 

Qiu H, Rehman RZU, Yu X, Xiong S. Application of Wearable Inertial Sensors and a New Test Battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8(1):16349.

Article  PubMed  PubMed Central  Google Scholar 

Lee M, Youm C, Noh B, Park H, Cheon SM. Gait Characteristics under Imposed Challenge Speed Conditions in Patients with Parkinson’s Disease During Overground Walking. Sensors. 2020;20(7).

Zago M, Sforza C, Pacifici I, Cimolin V, Camerota F, Celletti C, et al. Gait evaluation using inertial measurement units in subjects with Parkinson’s disease. J Electromyogr Kinesiology: Official J Int Soc Electrophysiological Kinesiol. 2018;42:44–8.

Article  Google Scholar 

Ismailidis P, Hegglin L, Egloff C, Pagenstert G, Kernen R, Eckardt A, et al. Side to side kinematic gait differences within patients and spatiotemporal and kinematic gait differences between patients with severe knee osteoarthritis and controls measured with inertial sensors. Gait Posture. 2021;84:24–30.

Article  PubMed  Google Scholar 

Beck Y, Herman T, Brozgol M, Giladi N, Mirelman A, Hausdorff JM. SPARC: a new approach to quantifying gait smoothness in patients with Parkinson’s disease. J Neuroeng Rehabil. 2018;15(1):49.

Article  PubMed  PubMed Central  Google Scholar 

Rehman RZU, Klocke P, Hryniv S, Galna B, Rochester L, Del Din S et al. Turning Detection During Gait: Algorithm Validation and Influence of Sensor Location and Turning Characteristics in the Classification of Parkinson’s Disease. Sensors. 2020;20(18).

Noh B, Youm C, Goh E, Lee M, Park H, Jeon H, et al. XGBoost based machine learning approach to predict the risk of fall in older adults using gait outcomes. Sci Rep. 2021;11(1):12183.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buongiorno D, Bortone I, Cascarano GD, Trotta GF, Brunetti A, Bevilacqua V. A low-cost vision system based on the analysis of motor features for recognition and severity rating of Parkinson’s Disease. BMC Med Inf Decis Mak. 2019;19(Suppl 9):243.

Article  Google Scholar 

Ismailidis P, Kaufmann M, Clauss M, Pagenstert G, Eckardt A, Ilchmann T, et al. Kinematic changes in severe hip osteoarthritis measured at matched gait speeds. J Orthop Res. 2021;39(6):1253–61.

Article  PubMed  Google Scholar 

Morris R, Stuart S, McBarron G, Fino PC, Mancini M, Curtze C. Validity of mobility lab (version 2) for gait assessment in young adults, older adults and Parkinson’s disease. Physiol Meas. 2019;40(9):095003.

Article  PubMed  PubMed Central  Google Scholar 

Maeda H, Ikoma K, Toyama S, Taniguchi D, Kido M, Ohashi S, et al. A kinematic and kinetic analysis of the hip and knee joints in patients with posterior tibialis tendon dysfunction; comparison with healthy age-matched controls. Gait Posture. 2018;66:228–35.

Article  PubMed  Google Scholar 

Wang Y, Zhang K, Zeng J, Yan S. Coordination of lower limbs in patients with knee osteoarthritis during walking. Gait Posture. 2021;83:160–6.

Article  PubMed  Google Scholar 

Gallagher NE, Bruce-Brand R, Bennett D, O’Brien S, Beverland DE. No difference in gait kinematics or kinetics between limbs in bilateral total hip replacement patients at long-term follow-up. Clin Biomech Elsevier Ltd. 2019;67:166–70.

Article  Google Scholar 

Maier MW, Aschauer S, Wolf SI, Dreher T, Merle C, Bitsch RG. Three dimensional gait analysis in patients with symptomatic component mal-rotation after total knee arthroplasty. Int Orthop. 2019;43(6):1371–8.

Article  PubMed  Google Scholar 

Godi M, Arcolin I, Giardini M, Corna S, Schieppati M. A pathophysiological model of gait captures the details of the impairment of pace/rhythm, variability and asymmetry in parkinsonian patients at distinct stages of the disease. Sci Rep. 2021;11(1):21143.

Article  PubMed  PubMed Central  Google Scholar 

Perring J, Mobbs R, Betteridge C. Analysis of patterns of Gait Deterioration in patients with lumbar spinal stenosis. World Neurosurg. 2020;141:e55–9.

Article  PubMed  Google Scholar 

Peixoto JG, de Souza Moreira B, Diz JBM, Timoteo EF, Kirkwood RN, Teixeira-Salmela LF. Analysis of symmetry between lower limbs during gait of older women with bilateral knee osteoarthritis. Aging Clin Exp Res. 2019;31(1):67–73.

Article  PubMed  Google Scholar 

Rehman RZU, Del Din S, Guan Y, Yarnall AJ, Shi JQ, Rochester L. Selecting clinically relevant Gait characteristics for classification of early Parkinson’s disease: a Comprehensive Machine Learning Approach. Sci Rep. 2019;9(1):17269.

Article  PubMed  PubMed Central  Google Scholar 

Guzik A, Drużbicki M. Application of the Gait deviation index in the analysis of post-stroke hemiparetic gait. J Biomech. 2020;99:109575.

Article  PubMed  Google Scholar 

Huang SC, Guerrieri S, Dalla Costa G, Pisa M, Leccabue G, Gregoris L et al. Intensive neurorehabilitation and gait improvement in progressive multiple sclerosis: clinical, Kinematic and Electromyographic Analysis. Brain Sci. 2022;12(2).

O’Reilly M, Caulfield B, Ward T, Johnston W, Doherty C. Wearable Inertial Sensor systems for Lower Limb Exercise detection and evaluation: a systematic review. Sports Med (Auckland NZ). 2018;48(5):1221–46.

Article  Google Scholar 

Betteridge C, Mobbs RJ, Ho D. Proposed objective scoring algorithm for walking performance, based on relevant gait metrics: the simplified mobility score (SMoS™)-observational study. J Orthop Surg Res. 2021;16(1):419.

Article  PubMed  PubMed Central  Google Scholar 

Owada H, Otomo A, Suzuki Y, Suto A, Murakami K, Kishikawa Y. The relationship between frailty and motor function among living in the community elderly females. J Phys Ther Sci. 2023;35(1):70–4.

Article  PubMed  PubMed Central  Google Scholar 

Abedi H, Boger J, Morita PP, Wong A, Shaker G. Hallway Gait Monitoring System using an In-Package Integrated Dielectric Lens paired with a mm-Wave Radar. Sensors. 2022;23(1).

Afschrift M, van Deursen R, De Groote F, Jonkers I. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity. Gait Posture. 2019;68:575–82.

Article  PubMed  Google Scholar 

Bet P, Castro PC, Ponti MA. Fall detection and fall risk assessment in older person using wearable sensors: a systematic review. Int J Med Inf. 2019;130:103946.

Article 

Comments (0)

No login
gif