Concentric-object and equiangular-object methods to perform standardized regional analysis in renal mpMRI

Selby NM, Blankestijn PJ, Boor P et al (2018) Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 33(suppl_2):ii4–ii14. https://doi.org/10.1093/ndt/gfy152

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eckerbom P, Hansell P, Cox E et al (2019) Multiparametric assessment of renal physiology in healthy volunteers using noninvasive magnetic resonance imaging. Am J Physiol-Renal Physiol 316(4):F693–F702. https://doi.org/10.1152/ajprenal.00486.2018

Article  PubMed  CAS  Google Scholar 

Buchanan CE, Mahmoud H, Cox EF et al (2019) Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol Dial Transplant 35(6):955–964. https://doi.org/10.1093/ndt/gfz129

Article  PubMed Central  Google Scholar 

de Boer A, Harteveld AA, Stemkens B et al (2020) Multiparametric renal MRI: an intrasubject test–retest repeatability study. Magn Reson Imaging 53(3):859–873. https://doi.org/10.1002/jmri.27167

Article  Google Scholar 

Buchanan C, Mahmoud H, Cox E et al (2021) Multiparametric MRI assessment of renal structure and function in acute kidney injury and renal recovery. Clin Kidney J 14(8):1969–1976. https://doi.org/10.1093/ckj/sfaa221

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dekkers IA, de Boer A, Sharma K et al (2019) Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI. Magn Reson Mater Phy 33(1):163–176. https://doi.org/10.1007/s10334-019-00797-5

Article  Google Scholar 

Wolf M, Bencikova D, Moser E (2023) T2 Mapping of the Kidney. In: Serai SD, Darge K (eds) Advanced clinical MRI of the kidney. Springer, Cham, pp 125–132. https://doi.org/10.1007/978-3-031-40169-5_9

Chapter  Google Scholar 

Robson MD, Fernandes CC, Teixeira R, Tunnicliffe EM (2023) T1 mapping of the kidney. In: Serai SD, Darge K (eds) Advanced clinical MRI of the kidney. Springer, Cham, pp 111–123. https://doi.org/10.1007/978-3-031-40169-5_8

Chapter  Google Scholar 

Madhuranthakam AJ, Fernandez-Seara MA (2023) Arterial spin labeled MRI for quantitative non-contrast perfusion measurement of the kidneys. In: Serai SD, Darge K (eds) Advanced clinical MRI of the kidney. Springer, Cham, pp 299–315. https://doi.org/10.1007/978-3-031-40169-5_19

Chapter  Google Scholar 

Nery F, Buchanan CE, Harteveld AA et al (2019) Consensus-based technical recommendations for clinical translation of renal ASL MRI. Magn Reson Mater Phy 33(1):141–161. https://doi.org/10.1007/s10334-019-00800-z

Article  Google Scholar 

Ljimani A, Caroli A, Laustsen C et al (2019) Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. Magn Reson Mater Phy 33(1):177–195. https://doi.org/10.1007/s10334-019-00790-y

Article  CAS  Google Scholar 

Piskunowicz M, Hofmann L, Zuercher E et al (2015) A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease. Magn Reson Imaging 33(3):253–261. https://doi.org/10.1016/j.mri.2014.12.002

Article  PubMed  Google Scholar 

Li LP, Milani B, Pruijm M et al (2019) Renal BOLD MRI in patients with chronic kidney disease: comparison of the semi-automated twelve layer concentric objects (TLCO) and manual ROI methods. Magn Reson Mater Phy 33(1):113–120. https://doi.org/10.1007/s10334-019-00808-5

Article  Google Scholar 

Milani B, Ansaloni A, Sousa-Guimaraes S et al (2016) Reduction of cortical oxygenation in chronic kidney disease: evidence obtained with a new analysis method of blood oxygenation level-dependent magnetic resonance imaging. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfw362

Article  Google Scholar 

Pruijm M, Milani B, Burnier M (2017) Blood oxygenation level-dependent MRI to assess renal oxygenation in renal diseases: progresses and challenges. Front Physiol. https://doi.org/10.3389/fphys.2016.00667

Article  PubMed  PubMed Central  Google Scholar 

Rankin AJ, Allwood-Spiers S, Lee MMY et al (2019) Comparing the interobserver reproducibility of different regions of interest on multi-parametric renal magnetic resonance imaging in healthy volunteers, patients with heart failure and renal transplant recipients. Magn Reson Mater Phy 33(1):103–112. https://doi.org/10.1007/s10334-019-00809-4

Article  Google Scholar 

Dekkers IA, Paiman EHM, de Vries APJ, Lamb HJ (2018) Reproducibility of native T1 mapping for renal tissue characterization at 3T. Magn Reson Imaging 49(2):588–596. https://doi.org/10.1002/jmri.26207

Article  Google Scholar 

Sanmiguel L, De Visschere P, Speeckaert M, Pullens P (2023) A new method to analyse renal perfusion: a proof of concept [Conference presentation abstract]. ISMRM Annual meeting & Exhibition, Toronto, Canada. https://www.ismrm.org/23/program-files/D-60.htm

Li X, Morgan PS, Ashburner J, Smith J, Rorden C (2016) The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J Neurosci Methods 264:47–56. https://doi.org/10.1016/j.jneumeth.2016.03.001

Article  PubMed  Google Scholar 

Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

Article  PubMed  PubMed Central  Google Scholar 

McManus IC, Stöver K, Kim D (2011) Arnheim’s Gestalt theory of visual balance: examining the compositional structure of art photographs and abstract images. i-Perception 2(6):615–647. https://doi.org/10.1068/i0445aap

Article  PubMed  PubMed Central  CAS  Google Scholar 

Suzuki S, Be K (1985) Topological structural analysis of digitized binary images by border following. Comput Vision Graph Image Proc 30(1):32–46. https://doi.org/10.1016/0734-189X(85)90016-7

Article  Google Scholar 

Cox EF, Buchanan CE, Bradley CR et al (2017) Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease. Front Physiol. https://doi.org/10.3389/fphys.2017.00696

Article  PubMed  PubMed Central  Google Scholar 

Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: Image acquisition and analysis strategies. Magn Reson Med 63(6):1627–1636. https://doi.org/10.1002/mrm.22387

Article  PubMed  Google Scholar 

Harteveld AA, de Boer A, Franklin SL, Leiner T, van Stralen M, Bos C (2019) Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI. Magn Reson Mater Phy 33(1):81–94. https://doi.org/10.1007/s10334-019-00806-7

Article  Google Scholar 

Hillaert A, Carlos L, Bogaert S et al (2024) Assessment of pharmacologically induced changes in canine kidney function by multiparametric magnetic resonance imaging and contrast enhanced ultrasound. Front Vet Sci. https://doi.org/10.3389/fvets.2024.1406343

Article  PubMed  PubMed Central  Google Scholar 

Munger KA, Kost Jr CK, Brenner BM, Maddox DA (2012) The renal circulations and glomerular ultrafiltration. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM (eds) Brenner & Rector’s the kidney. 9th ed. Philadelphia: Elsevier Saunders, p 94–137

Chapter  Google Scholar 

Lubas A, Zegadło A, Frankowska E, Klimkiewicz J, Jędrych E, Niemczyk S (2023) Ultrasound Doppler flow parameters are independently associated with renal cortex contrast-enhanced multidetector computed tomography perfusion and kidney function. JCM 12(6):2111. https://doi.org/10.3390/jcm12062111

Article  PubMed  PubMed Central  Google Scholar 

Graves FT (1954) The anatomy of the intrarenal arteries and its application to segmental resection of the kidney. Br J Surg 42(172):132–139. https://doi.org/10.1002/bjs.18004217204

Article  PubMed  CAS  Google Scholar 

Sampaio FJB, Aragao AHM (1990) Anatomical relationship between the intrarenal arteries and the kidney collecting system. J Urol 143(4):679–681. https://doi.org/10.1016/s0022-5347(17)40056-5

Article  PubMed  CAS  Google Scholar 

de Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230(3):652–659. https://doi.org/10.1148/radiol.2303021331

Article  PubMed  Google Scholar 

Gillis KA, McComb C, Foster JE et al (2014) Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. BMC Nephrol. https://doi.org/10.1186/1471-2369-15-23

Article  PubMed  PubMed Central  Google Scholar 

Hermann I, Chacon-Caldera J, Brumer I et al (2020) Magnetic resonance fingerprinting for simultaneous renal T1 and T2* mapping in a single breath-hold. Magn Reson Med 83(6):1940–1948

Comments (0)

No login
gif