Brain tumor detection and segmentation using deep learning

Swati ZNK et al (2019) Content-based brain tumor retrieval for MR images using transfer learning. IEEE Access 7:17809–17822. https://doi.org/10.1109/ACCESS.2019.2892455

Article  Google Scholar 

Selvapandian A, Manivannan K (2018) Fusion based Glioma brain tumor detection and segmentation using ANFIS classification. Comput Methods Progr Biomed 166:33–38. https://doi.org/10.1016/j.cmpb.2018.09.006

Article  CAS  Google Scholar 

Lather M, Singh P (2020) Investigating brain tumor segmentation and detection techniques. Proc Comput Sci 167(2019):121–130. https://doi.org/10.1016/j.procs.2020.03.189

Article  Google Scholar 

Cheng J et al (2015) Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10(10):1–13. https://doi.org/10.1371/journal.pone.0140381

Article  CAS  Google Scholar 

Girshick R (2015) Fast R-CNN. Proc IEEE Int Conf Comput Vis 2015:1440–1448. https://doi.org/10.1109/ICCV.2015.169

Article  Google Scholar 

Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

Article  PubMed  Google Scholar 

Doll P, Girshick R, Ai F (2017) Mask R-CNN. IEEE Int Conf Comput Vis 2:2

Google Scholar 

Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn 2016:779–788. https://doi.org/10.1109/CVPR.2016.91

Article  Google Scholar 

Impiombato D et al (2015) SSD: single shot MultiBox detector wei. Nucl Instrum Methods Phys Res A 794:185–192

Article  CAS  Google Scholar 

Ezhilarasi R, Varalakshmi P (2019) Tumor detection in the brain using faster R-CNN. Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018, pp. 388–392. https://doi.org/10.1109/I-SMAC.2018.8653705.

Avşar E, Salçin K (2019) Detection and classification of brain tumours from MRI images using faster R-CNN. Tehnički glasnik 13(4):337–342. https://doi.org/10.31803/tg-20190712095507

Article  Google Scholar 

Bhanothu Y, Kamalakannan A, Rajamanickam G (2020) Detection and classification of brain tumor in MRI images using deep convolutional network. 2020 6th International Conference on Advanced Computing and Communication Systems, ICACCS 2020, pp. 248–252, https://doi.org/10.1109/ICACCS48705.2020.9074375.

Sahaai MB, Jothilakshmi GR (1921) Hierarchical based tumor segmentation by detection using deep learning approach. J Phys Conf Ser 1:2021. https://doi.org/10.1088/1742-6596/1921/1/012080

Article  Google Scholar 

Kaldera HNTK, Gunasekara SR, DIssanayake MB (2019) Brain tumor classification and segmentation using faster R-CNN. 2019 Advances in Science and Engineering Technology International Conferences, ASET 2019, pp. 1–6, https://doi.org/10.1109/ICASET.2019.8714263

Masood M, Nazir T, Nawaz M, Javed A, Iqbal M, Mehmood A (2021) Brain tumor localization and segmentation using mask RCNN. Front Comput Sci. https://doi.org/10.1007/s11704-020-0105-y

Article  Google Scholar 

Yadav N, Binay U (2017) Comparative study of object detection algorithms. Int Res J Eng Technol 2:586–591

Google Scholar 

Nepal U, Eslamiat H (2022) Comparing YOLOv3, YOLOv4 and YOLOv5 for autonomous landing spot detection in faulty UAVs. Sensors 22:2. https://doi.org/10.3390/s22020464

Article  Google Scholar 

Xu R, Lin H, Lu K, Cao L, Liu Y (2021) A forest fire detection system based on ensemble learning. Forests 12(2):1–17. https://doi.org/10.3390/f12020217

Article  Google Scholar 

Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Available: http://arxiv.org/abs/1505.04597

Cheng J (2017) Brain tumor figshare dataset. 03.04.2017. [Online]. Available: https://figshare.com/articles/dataset/brain_tumor_dataset/1512427

Bakas S et al (2017) Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Sci Data. https://doi.org/10.1038/sdata.2017.117

Article  PubMed  PubMed Central  Google Scholar 

Menze BH et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694

Article  PubMed  Google Scholar 

Bakas S et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. [Online]. Available: http://arxiv.org/abs/1811.02629

Myronenko A (2019) 3D MRI brain tumor segmentation using autoencoder regularization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11384 LNCS, pp. 311–320, https://doi.org/10.1007/978-3-030-11726-9_28.

Bochkovskiy A, Wang CY, Liao HYM (2020) YOLOv4: optimal speed and accuracy of object detection

YOLOv5 (2021) Accessed: Sep. 17, 2021. [Online]. Available: https://github.com/ultralytics/yolov5

FOU Analysis Group. “FMRIB Software Library(FSL),” https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL.

Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155. https://doi.org/10.1002/hbm.10062

Article  PubMed  PubMed Central  Google Scholar 

Bogdanov A, Mazzanti ML (2011) Molecular magnetic resonance contrast agents for the detection of cancer: past and present. Semin Oncol 38(1):42–54. https://doi.org/10.1053/j.seminoncol.2010.11.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nti IK, Nyarko-Boateng O, Aning J (2021) Performance of machine learning algorithms with different K values in K-fold crossvalidation. Int J Inf Technol Comput Sci 13(6):61–71. https://doi.org/10.5815/ijitcs.2021.06.05

Article  Google Scholar 

Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–14, 2015

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn 2016:770–778. https://doi.org/10.1109/CVPR.2016.90

Article  Google Scholar 

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. Proceedings 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 2261–2269, https://doi.org/10.1109/CVPR.2017.243

A. F. Gad, “Mean Average Precision,” 2020.

Tiwari A, Srivastava S, Pant M (2020) Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recognit Lett 131:244–260. https://doi.org/10.1016/j.patrec.2019.11.020

Article  Google Scholar 

“Stratified Sampling in Machine Learning,” 2022.

Comments (0)

No login
gif