Morphology of the human inner ear and vestibulocochlear nerve assessed using 7 T MRI

Nash R, Otero S, Lavy J (2019) Use of MRI to determine cochlear duct length in patients undergoing cochlear implantation. Cochlear Implants Int 20:57–61. https://doi.org/10.1080/14670100.2018.1549186

Article  PubMed  Google Scholar 

Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI (1996) Auditory neuropathy. Brain 119:741–753. https://doi.org/10.1093/brain/119.3.741

Article  PubMed  Google Scholar 

Berlin CI, Hood LJ, Morlet T, Wilensky D, Li L, Mattingly KR, Taylor-Jeanfreau J, Keats BJ, John PS, Montgomery E, Shallop JK, Russell BA, Frisch SA (2010) Multi-site diagnosis and management of 260 patients with auditory neuropathy/dys-synchrony (auditory neuropathy spectrum disorder). Int J Audiol 49:30–43. https://doi.org/10.3109/14992020903160892

Article  PubMed  Google Scholar 

Furuta S, Ogura M, Higano S, Takahashi S, Kawase T (2000) Reduced size of the cochlear branch of the vestibulocochlear nerve in a child with sensorineural hearing loss. AJNR Am J Neuroradiol 21:328–330

CAS  PubMed  PubMed Central  Google Scholar 

Thylur DS, Jacobs RE, Go JL, Toga AW, Niparko JK (2017) Ultra-high-field magnetic resonance imaging of the human inner ear at 11.7 Tesla. Otol Neurotol 38:133–138. https://doi.org/10.1097/MAO.0000000000001242

Article  PubMed  PubMed Central  Google Scholar 

van der Jagt AM, Brink WM, Webb A, Frijns JH, Verbist BM (2015) In vivo imaging of the inner ear at 7T MRI: image evaluation and comparison with 3TIn Vivo Inner Ear Imaging at 7 T. Otol Neurotol 36:1458–1459. https://doi.org/10.1097/MAO.0000000000000826

Article  PubMed  Google Scholar 

van der Jagt MA, Brink WM, Versluis MJ, Steens SC, Briaire JJ, Webb AG, Frijns JH, Verbist BM (2015) Visualization of human inner ear anatomy with high-resolution MR imaging at 7T: initial clinical assessment. AJNR Am J Neuroradiol 36:378–383. https://doi.org/10.3174/ajnr.A4084

Article  PubMed  PubMed Central  Google Scholar 

van Uijen CM, den Boef JH (1984) Driven-equilibrium radiofrequency pulses in NMR imaging. Magn Reson Med 1:502–507. https://doi.org/10.1002/mrm.1910010409

Article  PubMed  Google Scholar 

Nakashima K, Morikawa M, Ishimaru H, Ochi M, Kabasawa H, Hayashi K (2002) Three-dimensional fast recovery fast spin-echo imaging of the inner ear and the vestibulocochlear nerve. Eur Radiol 12:2776–2780. https://doi.org/10.1007/s00330-002-1493-0

Article  CAS  PubMed  Google Scholar 

Van Gemert J, Brink W, Webb A, Remis R (2017) An efficient methodology for the analysis of dielectric shimming materials in magnetic resonance imaging. IEEE Trans Med Imaging 36:666–673. https://doi.org/10.1109/TMI.2016.2624507

Article  PubMed  Google Scholar 

Teeuwisse WM, Brink WM, Webb AG (2012) Quantitative assessment of the effects of high-permittivity pads in 7 Tesla MRI of the brain. Magn Reson Med 67:1285–1293. https://doi.org/10.1002/mrm.23108

Article  PubMed  Google Scholar 

Brink WM, van der Jagt AM, Versluis MJ, Verbist BM, Webb AG (2014) High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T. Invest Radiol 49:271–277. https://doi.org/10.1097/RLI.0000000000000026

Article  CAS  PubMed  Google Scholar 

O’Reilly TPA, Webb AG, Brink WM (2016) Practical improvements in the design of high permittivity pads for dielectric shimming in neuroimaging at 7T. J Magn Reson 270:108–114. https://doi.org/10.1016/j.jmr.2016.07.003

Article  CAS  PubMed  Google Scholar 

Heutink F, Koch V, Verbist B, van der Woude WJ, Mylanus E, Huinck W, Sechopoulos I, Caballo M (2020) Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images. Comput Methods Programs Biomed 191:105387. https://doi.org/10.1016/j.cmpb.2020.105387

Article  PubMed  Google Scholar 

Pelliccia P, Venail F, Bonafe A, Makeieff M, Iannetti G, Bartolomeo M, Mondain M (2014) Cochlea size variability and implications in clinical practice. Acta Otorhinolaryngol Ital 34:42–49

CAS  PubMed  PubMed Central  Google Scholar 

Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Article  PubMed  PubMed Central  Google Scholar 

Giese D, Li H, Liu W, Staxäng K, Hodik M, Ladak HM, Agrawal S, Schrott-Fischer A, Glueckert R, Rask-Andersen H (2024) Microanatomy of the human tunnel of Corti structures and cochlear partition-tonotopic variations and transcellular signaling. J Anat. https://doi.org/10.1111/joa.14045

Article  PubMed  PubMed Central  Google Scholar 

Ciftci E, Anik Y, Arslan A, Akansel G, Sarisoy T, Demirci A (2004) Driven equilibrium (drive) MR imaging of the cranial nerves V-VIII: comparison with the T2-weighted 3D TSE sequence. Eur J Radiol 51:234–240. https://doi.org/10.1016/j.ejrad.2003.10.019

Article  CAS  PubMed  Google Scholar 

Byun JS, Kim HJ, Yim YJ, Kim ST, Jeon P, Kim KH, Kim SS, Jeon YH, Lee J (2008) MR imaging of the internal auditory canal and inner ear at 3T: comparison between 3D driven equilibrium and 3D balanced fast field echo sequences. Korean J Radiol 9:212–218. https://doi.org/10.3348/kjr.2008.9.3.212

Article  PubMed  PubMed Central  Google Scholar 

Lane JI, Ward H, Witte RJ, Bernstein MA, Driscoll CL (2004) 3-T imaging of the cochlear nerve and labyrinth in cochlear-implant candidates: 3D fast recovery fast spin-echo versus 3D constructive interference in the steady state techniques. AJNR Am J Neuroradiol 25:618–622

PubMed  PubMed Central  Google Scholar 

Giesemann AM, Raab P, Lyutenski S, Dettmer S, Bültmann E, Frömke C, Lenarz T, Lanfermann H, Goetz F (2014) Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil. Laryngoscope 124:751–754. https://doi.org/10.1002/lary.24300

Article  PubMed  Google Scholar 

van Egmond SL, Visser F, Pameijer FA, Grolman W (2014) Ex vivo and in vivo imaging of the inner ear at 7 Tesla MRI. Otol Neurotol 35:725–729. https://doi.org/10.1097/MAO.0000000000000276

Article  PubMed  Google Scholar 

van Egmond SL, Visser F, Pameijer FA, Grolman W (2015) In vivo imaging of the inner ear at 7T MRI: image evaluation and comparison with 3T. Otol Neurotol 36:687–693. https://doi.org/10.1097/MAO.0000000000000621

Article  PubMed  Google Scholar 

Mian OS, Li Y, Antunes A, Glover PM, Day BL (2013) On the vertigo due to static magnetic fields. PLoS ONE 8:e78748. https://doi.org/10.1371/journal.pone.0078748

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mian OS, Li Y, Antunes A, Glover PM, Day BL (2016) Effect of head pitch and roll orientations on magnetically induced vertigo. J Physiol 594:1051–1067. https://doi.org/10.1113/jp271513

Article  CAS  PubMed  Google Scholar 

Glover P Magnetic Field-Induced Vertigo in the MRI Environment

Da Costa S, Clément J, Gruetter R, Ipek Ö (2021) Evaluation of the whole auditory pathway using high-resolution and functional MRI at 7T parallel-transmit. PLoS ONE 16:e0254378. https://doi.org/10.1371/journal.pone.0254378

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Gemert J, Brink W, Webb A, Remis R (2019) High-permittivity pad design tool for 7T neuroimaging and 3T body imaging. Magn Reson Med 81:3370–3378. https://doi.org/10.1002/mrm.27629

Article  PubMed  Google Scholar 

Kim HS, Kim DI, Chung IH, Lee WS, Kim KY (1998) Topographical relationship of the facial and vestibulocochlear nerves in the subarachnoid space and internal auditory canal. AJNR Am J Neuroradiol 19:1155–1161

CAS  PubMed  PubMed Central  Google Scholar 

Taeger J, Muller-Graff FT, Ilgen L, Schendzielorz P, Hagen R, Neun T, Rak K (2021) Cochlear duct length measurements in computed tomography and magnetic resonance imaging using newly developed techniques. OTO Open 5:2473974X211045312. https://doi.org/10.1177/2473974X211045312

Article  PubMed  PubMed Central 

Comments (0)

No login
gif