Nash R, Otero S, Lavy J (2019) Use of MRI to determine cochlear duct length in patients undergoing cochlear implantation. Cochlear Implants Int 20:57–61. https://doi.org/10.1080/14670100.2018.1549186
Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI (1996) Auditory neuropathy. Brain 119:741–753. https://doi.org/10.1093/brain/119.3.741
Berlin CI, Hood LJ, Morlet T, Wilensky D, Li L, Mattingly KR, Taylor-Jeanfreau J, Keats BJ, John PS, Montgomery E, Shallop JK, Russell BA, Frisch SA (2010) Multi-site diagnosis and management of 260 patients with auditory neuropathy/dys-synchrony (auditory neuropathy spectrum disorder). Int J Audiol 49:30–43. https://doi.org/10.3109/14992020903160892
Furuta S, Ogura M, Higano S, Takahashi S, Kawase T (2000) Reduced size of the cochlear branch of the vestibulocochlear nerve in a child with sensorineural hearing loss. AJNR Am J Neuroradiol 21:328–330
CAS PubMed PubMed Central Google Scholar
Thylur DS, Jacobs RE, Go JL, Toga AW, Niparko JK (2017) Ultra-high-field magnetic resonance imaging of the human inner ear at 11.7 Tesla. Otol Neurotol 38:133–138. https://doi.org/10.1097/MAO.0000000000001242
Article PubMed PubMed Central Google Scholar
van der Jagt AM, Brink WM, Webb A, Frijns JH, Verbist BM (2015) In vivo imaging of the inner ear at 7T MRI: image evaluation and comparison with 3TIn Vivo Inner Ear Imaging at 7 T. Otol Neurotol 36:1458–1459. https://doi.org/10.1097/MAO.0000000000000826
van der Jagt MA, Brink WM, Versluis MJ, Steens SC, Briaire JJ, Webb AG, Frijns JH, Verbist BM (2015) Visualization of human inner ear anatomy with high-resolution MR imaging at 7T: initial clinical assessment. AJNR Am J Neuroradiol 36:378–383. https://doi.org/10.3174/ajnr.A4084
Article PubMed PubMed Central Google Scholar
van Uijen CM, den Boef JH (1984) Driven-equilibrium radiofrequency pulses in NMR imaging. Magn Reson Med 1:502–507. https://doi.org/10.1002/mrm.1910010409
Nakashima K, Morikawa M, Ishimaru H, Ochi M, Kabasawa H, Hayashi K (2002) Three-dimensional fast recovery fast spin-echo imaging of the inner ear and the vestibulocochlear nerve. Eur Radiol 12:2776–2780. https://doi.org/10.1007/s00330-002-1493-0
Article CAS PubMed Google Scholar
Van Gemert J, Brink W, Webb A, Remis R (2017) An efficient methodology for the analysis of dielectric shimming materials in magnetic resonance imaging. IEEE Trans Med Imaging 36:666–673. https://doi.org/10.1109/TMI.2016.2624507
Teeuwisse WM, Brink WM, Webb AG (2012) Quantitative assessment of the effects of high-permittivity pads in 7 Tesla MRI of the brain. Magn Reson Med 67:1285–1293. https://doi.org/10.1002/mrm.23108
Brink WM, van der Jagt AM, Versluis MJ, Verbist BM, Webb AG (2014) High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T. Invest Radiol 49:271–277. https://doi.org/10.1097/RLI.0000000000000026
Article CAS PubMed Google Scholar
O’Reilly TPA, Webb AG, Brink WM (2016) Practical improvements in the design of high permittivity pads for dielectric shimming in neuroimaging at 7T. J Magn Reson 270:108–114. https://doi.org/10.1016/j.jmr.2016.07.003
Article CAS PubMed Google Scholar
Heutink F, Koch V, Verbist B, van der Woude WJ, Mylanus E, Huinck W, Sechopoulos I, Caballo M (2020) Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images. Comput Methods Programs Biomed 191:105387. https://doi.org/10.1016/j.cmpb.2020.105387
Pelliccia P, Venail F, Bonafe A, Makeieff M, Iannetti G, Bartolomeo M, Mondain M (2014) Cochlea size variability and implications in clinical practice. Acta Otorhinolaryngol Ital 34:42–49
CAS PubMed PubMed Central Google Scholar
Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012
Article PubMed PubMed Central Google Scholar
Giese D, Li H, Liu W, Staxäng K, Hodik M, Ladak HM, Agrawal S, Schrott-Fischer A, Glueckert R, Rask-Andersen H (2024) Microanatomy of the human tunnel of Corti structures and cochlear partition-tonotopic variations and transcellular signaling. J Anat. https://doi.org/10.1111/joa.14045
Article PubMed PubMed Central Google Scholar
Ciftci E, Anik Y, Arslan A, Akansel G, Sarisoy T, Demirci A (2004) Driven equilibrium (drive) MR imaging of the cranial nerves V-VIII: comparison with the T2-weighted 3D TSE sequence. Eur J Radiol 51:234–240. https://doi.org/10.1016/j.ejrad.2003.10.019
Article CAS PubMed Google Scholar
Byun JS, Kim HJ, Yim YJ, Kim ST, Jeon P, Kim KH, Kim SS, Jeon YH, Lee J (2008) MR imaging of the internal auditory canal and inner ear at 3T: comparison between 3D driven equilibrium and 3D balanced fast field echo sequences. Korean J Radiol 9:212–218. https://doi.org/10.3348/kjr.2008.9.3.212
Article PubMed PubMed Central Google Scholar
Lane JI, Ward H, Witte RJ, Bernstein MA, Driscoll CL (2004) 3-T imaging of the cochlear nerve and labyrinth in cochlear-implant candidates: 3D fast recovery fast spin-echo versus 3D constructive interference in the steady state techniques. AJNR Am J Neuroradiol 25:618–622
PubMed PubMed Central Google Scholar
Giesemann AM, Raab P, Lyutenski S, Dettmer S, Bültmann E, Frömke C, Lenarz T, Lanfermann H, Goetz F (2014) Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil. Laryngoscope 124:751–754. https://doi.org/10.1002/lary.24300
van Egmond SL, Visser F, Pameijer FA, Grolman W (2014) Ex vivo and in vivo imaging of the inner ear at 7 Tesla MRI. Otol Neurotol 35:725–729. https://doi.org/10.1097/MAO.0000000000000276
van Egmond SL, Visser F, Pameijer FA, Grolman W (2015) In vivo imaging of the inner ear at 7T MRI: image evaluation and comparison with 3T. Otol Neurotol 36:687–693. https://doi.org/10.1097/MAO.0000000000000621
Mian OS, Li Y, Antunes A, Glover PM, Day BL (2013) On the vertigo due to static magnetic fields. PLoS ONE 8:e78748. https://doi.org/10.1371/journal.pone.0078748
Article CAS PubMed PubMed Central Google Scholar
Mian OS, Li Y, Antunes A, Glover PM, Day BL (2016) Effect of head pitch and roll orientations on magnetically induced vertigo. J Physiol 594:1051–1067. https://doi.org/10.1113/jp271513
Article CAS PubMed Google Scholar
Glover P Magnetic Field-Induced Vertigo in the MRI Environment
Da Costa S, Clément J, Gruetter R, Ipek Ö (2021) Evaluation of the whole auditory pathway using high-resolution and functional MRI at 7T parallel-transmit. PLoS ONE 16:e0254378. https://doi.org/10.1371/journal.pone.0254378
Article CAS PubMed PubMed Central Google Scholar
van Gemert J, Brink W, Webb A, Remis R (2019) High-permittivity pad design tool for 7T neuroimaging and 3T body imaging. Magn Reson Med 81:3370–3378. https://doi.org/10.1002/mrm.27629
Kim HS, Kim DI, Chung IH, Lee WS, Kim KY (1998) Topographical relationship of the facial and vestibulocochlear nerves in the subarachnoid space and internal auditory canal. AJNR Am J Neuroradiol 19:1155–1161
CAS PubMed PubMed Central Google Scholar
Taeger J, Muller-Graff FT, Ilgen L, Schendzielorz P, Hagen R, Neun T, Rak K (2021) Cochlear duct length measurements in computed tomography and magnetic resonance imaging using newly developed techniques. OTO Open 5:2473974X211045312. https://doi.org/10.1177/2473974X211045312
Comments (0)