Akhy MT, Brown CM, Old DC (1984) L-Rhamnose utilisation in Salmonella typhimurium. J Appl Bacteriol 56:269–274. https://doi.org/10.1111/j.1365-2672.1984.tb01347.x
Article CAS PubMed Google Scholar
Al-Zarban S, Heffernan L, Nishitani J, Ransone L, Wilcox G (1984) Positive control of the L-rhamnose genetic system in Salmonella typhimurium LT2. J Bacteriol 158:603–608. https://doi.org/10.1128/jb.158.2.603-608.1984
Article CAS PubMed PubMed Central Google Scholar
Badia J, Gimenez R, Baldomá L, Barnes E, Fessner WD, Aguilar J (1991) L-lyxose metabolism employs the L-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on L-lyxose. J Bacteriol 173:5144–5150. https://doi.org/10.1128/jb.173.16.5144-5150.1991
Article CAS PubMed PubMed Central Google Scholar
Bai W, Shen J, Zhu YM, Men Y, Sun YX, Ma YH (2015) Characteristics and kinetic properties of L-rhamnose isomerase from Bacillus subtilis by isothermal titration calorimetry for the production of D-allose. Food Sci Technol Res 21:13–22. https://doi.org/10.3136/fstr.21.13
Bhuiyan SH, Itami Y, Izumori K (1997) Isolation of an L-rhamnose isomerase-constitutive mutant of Pseudomonas sp. strain LL172: purification and characterization of the enzyme. J Ferment Bioeng 84:319–323. https://doi.org/10.1016/S0922-338X(97)89251-3
Chen Z, Xu W, Zhang W, Zhang T, Jiang B, Mu W (2018a) Characterization of a thermostable recombinant L-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of L-fructose and L-rhamnulose. J Sci Food Agric 98:2184–2193. https://doi.org/10.1002/jsfa.8703
Article CAS PubMed Google Scholar
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W (2018b) Improving thermostability and catalytic behavior of L-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 toward D-allulose by site-directed mutagenesis. J Agric Food Chem 66:12017–12024. https://doi.org/10.1021/acs.jafc.8b05107
Article CAS PubMed Google Scholar
Domagk GF, Zech R (1963) On the decomposition of desoxy sugars by bacterial enzymes. I. l-Rhamnose-Isomerase from Lactobacillus plantarum. Biochem Z 339:145–153
Duan S, Chen Y, Wang G, Li Z, Dong S, Wu Y, Wang Y, Ma C, Wang R (2023) A study of targeted mutation of L-rhamnose isomerase to improve the conversion efficiency of D-allose. Enz Microbial Technol 168:110259. https://doi.org/10.1016/j.enzmictec.2023.110259
Englesberg E (1957) Physiological basis for rhamnose utilization by a mutant of Pasteurella pestis. II. A single mutational event leading to the production of two enzymes. Arch Biochem Biophys 71:179–193. https://doi.org/10.1016/0003-9861(57)90020-6
Article CAS PubMed Google Scholar
Englesberg E, Baron LS (1959) Mutation to L-rhamnose resistance and transduction to L-rhamnose utilization in Salmonella typhosa. J Bacteriol 78:675–686. https://doi.org/10.1128/jb.78.5.675-686.1959
Article CAS PubMed PubMed Central Google Scholar
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678
Fenn TD, Ringe D, Petsko GA (2004) Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift. Biochemistry 43:6464–6474. https://doi.org/10.1021/bi049812o
Article CAS PubMed Google Scholar
Granström TB, Takata G, Tokuda M, Izumori K (2004) Izumoring: a novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97:89–94. https://doi.org/10.1016/S1389-1723(04)70173-5
Hagedoorn PL, Pabst M, Hanefeld U (2024) The metal cofactor: stationary or mobile? Appl Microbiol Biotechnol 108:391. https://doi.org/10.1007/s00253-024-13206-2
Article CAS PubMed PubMed Central Google Scholar
Hayashi N, Iida T, Yamada T, Okuma K, Takehara I, Yamamoto T, Yamada K, Tokuda M (2010) Study on the postprandial blood glucose suppression effect of D-psicose in borderline diabetes and the safety of long-term ingestion by normal human subjects. Biosci Biotechnol Biochem 74:510–519. https://doi.org/10.1271/bbb.90707
Article CAS PubMed Google Scholar
Iida T, Yamada T, Hayashi N, Okuma K, Izumori K, Ishii R, Matsuo T (2013) Reduction of abdominal fat accumulation in rats by 8-week ingestion of a newly developed sweetener made from high fructose corn syrup. Food Chem 138:781–785. https://doi.org/10.1016/j.foodchem.2012.11.017
Article CAS PubMed Google Scholar
Izumori K (2002) Bioproduction strategies for rare hexose sugars. Naturwissenschaften 89:120–124. https://doi.org/10.1007/s00114-002-0297-z
Article CAS PubMed Google Scholar
Izumori K (2006) Izumoring: a strategy for bioproduction of all hexoses. J Biotechnol 124:717–722. https://doi.org/10.1016/j.jbiotec.2006.04.016
Article CAS PubMed Google Scholar
Jenkins J, Janin J, Rey F, Chiadmi M, van Tilbeurgh H, Lasters I, De Maeyer M, Van Belle D, Wodak SJ, Lauwereys M, Stanssens P, Mrabet NT, Snauwaert J, Matthyssens G, Lambeir A-M (1992) Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry 31:5449–5458. https://doi.org/10.1021/bi00139a005
Article CAS PubMed Google Scholar
Jiang N, Dillon FM, Silva A, Gomez-Cano L, Grotewold E (2021) Rhamnose in plants - from biosynthesis to diverse functions. Plant Sci 302:110687. https://doi.org/10.1016/j.plantsci.2020.110687
Article CAS PubMed Google Scholar
Kim YS, Shin KC, Lim YR, Oh DK (2013) Characterization of a recombinant L-rhamnose isomerase from Dictyoglomus turgidum and its application for L-rhamnulose production. Biotechnol Lett 35:259–264. https://doi.org/10.1007/s10529-012-1069-2
Article CAS PubMed Google Scholar
Korndörfer IP, Fessner WD, Matthews BW (2000) The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. J Mol Biol 300:917–933. https://doi.org/10.1006/jmbi.2000.3896
Article CAS PubMed Google Scholar
Kovalevsky AY, Katz AK, Carrell HL, Hanson L, Mustyakimov M, Fisher SZ, Coates L, Schoenborn BP, Bunick GJ, Glusker JP, Langan P (2008) Hydrogen location in stages of an enzyme-catalyzed reaction: time-of-flight neutron structure of D-xylose isomerase with bound D-xylulose. Biochemistry 47:7595–7597. https://doi.org/10.1021/bi8005434
Article CAS PubMed Google Scholar
Lavie A, Allen KN, Petsko GA, Ringe D (1994) X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry 33:5469–5480. https://doi.org/10.1021/bi00184a016
Article CAS PubMed Google Scholar
Le SQ, Gascuel O (2008) An Improved General Amino Acid Replacement Matrix. Mol Biol Evol 25:1307–1320. https://doi.org/10.1093/molbev/msn067
Article CAS PubMed Google Scholar
Leang K, Takada G, Ishimura A, Okita M, Izumori K (2004a) Cloning, nucleotide sequence, and overexpression of the L-rhamnose isomerase gene from Pseudomonas stutzeri in Escherichia coli. Appl Environ Microbiol 70:3298–3304. https://doi.org/10.1128/AEM.70.6.3298-3304.2004
Article CAS PubMed PubMed Central Google Scholar
Leang K, Takada G, Fukai Y, Morimoto K, Granstrom TB, Izumori K (2004b) Novel reactions of L-rhamnose isomerase from Pseudomonas stutzeri and its relation with D-xylose isomerase via substrate specificity. Biochim Biophys Acta 1674:68–77. https://doi.org/10.1016/j.bbagen.2004.06.003
Comments (0)