L-rhamnose isomerase: a crucial enzyme for rhamnose catabolism and conversion of rare sugars

Akhy MT, Brown CM, Old DC (1984) L-Rhamnose utilisation in Salmonella typhimurium. J Appl Bacteriol 56:269–274. https://doi.org/10.1111/j.1365-2672.1984.tb01347.x

Article  CAS  PubMed  Google Scholar 

Al-Zarban S, Heffernan L, Nishitani J, Ransone L, Wilcox G (1984) Positive control of the L-rhamnose genetic system in Salmonella typhimurium LT2. J Bacteriol 158:603–608. https://doi.org/10.1128/jb.158.2.603-608.1984

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badia J, Gimenez R, Baldomá L, Barnes E, Fessner WD, Aguilar J (1991) L-lyxose metabolism employs the L-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on L-lyxose. J Bacteriol 173:5144–5150. https://doi.org/10.1128/jb.173.16.5144-5150.1991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai W, Shen J, Zhu YM, Men Y, Sun YX, Ma YH (2015) Characteristics and kinetic properties of L-rhamnose isomerase from Bacillus subtilis by isothermal titration calorimetry for the production of D-allose. Food Sci Technol Res 21:13–22. https://doi.org/10.3136/fstr.21.13

Article  CAS  Google Scholar 

Bhuiyan SH, Itami Y, Izumori K (1997) Isolation of an L-rhamnose isomerase-constitutive mutant of Pseudomonas sp. strain LL172: purification and characterization of the enzyme. J Ferment Bioeng 84:319–323. https://doi.org/10.1016/S0922-338X(97)89251-3

Article  CAS  Google Scholar 

Chen Z, Xu W, Zhang W, Zhang T, Jiang B, Mu W (2018a) Characterization of a thermostable recombinant L-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of L-fructose and L-rhamnulose. J Sci Food Agric 98:2184–2193. https://doi.org/10.1002/jsfa.8703

Article  CAS  PubMed  Google Scholar 

Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W (2018b) Improving thermostability and catalytic behavior of L-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 toward D-allulose by site-directed mutagenesis. J Agric Food Chem 66:12017–12024. https://doi.org/10.1021/acs.jafc.8b05107

Article  CAS  PubMed  Google Scholar 

Domagk GF, Zech R (1963) On the decomposition of desoxy sugars by bacterial enzymes. I. l-Rhamnose-Isomerase from Lactobacillus plantarum. Biochem Z 339:145–153

CAS  PubMed  Google Scholar 

Duan S, Chen Y, Wang G, Li Z, Dong S, Wu Y, Wang Y, Ma C, Wang R (2023) A study of targeted mutation of L-rhamnose isomerase to improve the conversion efficiency of D-allose. Enz Microbial Technol 168:110259. https://doi.org/10.1016/j.enzmictec.2023.110259

Englesberg E (1957) Physiological basis for rhamnose utilization by a mutant of Pasteurella pestis. II. A single mutational event leading to the production of two enzymes. Arch Biochem Biophys 71:179–193. https://doi.org/10.1016/0003-9861(57)90020-6

Article  CAS  PubMed  Google Scholar 

Englesberg E, Baron LS (1959) Mutation to L-rhamnose resistance and transduction to L-rhamnose utilization in Salmonella typhosa. J Bacteriol 78:675–686. https://doi.org/10.1128/jb.78.5.675-686.1959

Article  CAS  PubMed  PubMed Central  Google Scholar 

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678

Article  PubMed  Google Scholar 

Fenn TD, Ringe D, Petsko GA (2004) Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift. Biochemistry 43:6464–6474. https://doi.org/10.1021/bi049812o

Article  CAS  PubMed  Google Scholar 

Granström TB, Takata G, Tokuda M, Izumori K (2004) Izumoring: a novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97:89–94. https://doi.org/10.1016/S1389-1723(04)70173-5

Article  PubMed  Google Scholar 

Hagedoorn PL, Pabst M, Hanefeld U (2024) The metal cofactor: stationary or mobile? Appl Microbiol Biotechnol 108:391. https://doi.org/10.1007/s00253-024-13206-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayashi N, Iida T, Yamada T, Okuma K, Takehara I, Yamamoto T, Yamada K, Tokuda M (2010) Study on the postprandial blood glucose suppression effect of D-psicose in borderline diabetes and the safety of long-term ingestion by normal human subjects. Biosci Biotechnol Biochem 74:510–519. https://doi.org/10.1271/bbb.90707

Article  CAS  PubMed  Google Scholar 

Iida T, Yamada T, Hayashi N, Okuma K, Izumori K, Ishii R, Matsuo T (2013) Reduction of abdominal fat accumulation in rats by 8-week ingestion of a newly developed sweetener made from high fructose corn syrup. Food Chem 138:781–785. https://doi.org/10.1016/j.foodchem.2012.11.017

Article  CAS  PubMed  Google Scholar 

Izumori K (2002) Bioproduction strategies for rare hexose sugars. Naturwissenschaften 89:120–124. https://doi.org/10.1007/s00114-002-0297-z

Article  CAS  PubMed  Google Scholar 

Izumori K (2006) Izumoring: a strategy for bioproduction of all hexoses. J Biotechnol 124:717–722. https://doi.org/10.1016/j.jbiotec.2006.04.016

Article  CAS  PubMed  Google Scholar 

Jenkins J, Janin J, Rey F, Chiadmi M, van Tilbeurgh H, Lasters I, De Maeyer M, Van Belle D, Wodak SJ, Lauwereys M, Stanssens P, Mrabet NT, Snauwaert J, Matthyssens G, Lambeir A-M (1992) Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry 31:5449–5458. https://doi.org/10.1021/bi00139a005

Article  CAS  PubMed  Google Scholar 

Jiang N, Dillon FM, Silva A, Gomez-Cano L, Grotewold E (2021) Rhamnose in plants - from biosynthesis to diverse functions. Plant Sci 302:110687. https://doi.org/10.1016/j.plantsci.2020.110687

Article  CAS  PubMed  Google Scholar 

Kim YS, Shin KC, Lim YR, Oh DK (2013) Characterization of a recombinant L-rhamnose isomerase from Dictyoglomus turgidum and its application for L-rhamnulose production. Biotechnol Lett 35:259–264. https://doi.org/10.1007/s10529-012-1069-2

Article  CAS  PubMed  Google Scholar 

Korndörfer IP, Fessner WD, Matthews BW (2000) The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. J Mol Biol 300:917–933. https://doi.org/10.1006/jmbi.2000.3896

Article  CAS  PubMed  Google Scholar 

Kovalevsky AY, Katz AK, Carrell HL, Hanson L, Mustyakimov M, Fisher SZ, Coates L, Schoenborn BP, Bunick GJ, Glusker JP, Langan P (2008) Hydrogen location in stages of an enzyme-catalyzed reaction: time-of-flight neutron structure of D-xylose isomerase with bound D-xylulose. Biochemistry 47:7595–7597. https://doi.org/10.1021/bi8005434

Article  CAS  PubMed  Google Scholar 

Lavie A, Allen KN, Petsko GA, Ringe D (1994) X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry 33:5469–5480. https://doi.org/10.1021/bi00184a016

Article  CAS  PubMed  Google Scholar 

Le SQ, Gascuel O (2008) An Improved General Amino Acid Replacement Matrix. Mol Biol Evol 25:1307–1320. https://doi.org/10.1093/molbev/msn067

Article  CAS  PubMed  Google Scholar 

Leang K, Takada G, Ishimura A, Okita M, Izumori K (2004a) Cloning, nucleotide sequence, and overexpression of the L-rhamnose isomerase gene from Pseudomonas stutzeri in Escherichia coli. Appl Environ Microbiol 70:3298–3304. https://doi.org/10.1128/AEM.70.6.3298-3304.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leang K, Takada G, Fukai Y, Morimoto K, Granstrom TB, Izumori K (2004b) Novel reactions of L-rhamnose isomerase from Pseudomonas stutzeri and its relation with D-xylose isomerase via substrate specificity. Biochim Biophys Acta 1674:68–77. https://doi.org/10.1016/j.bbagen.2004.06.003

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif