Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U (2022) Methyltransferases: functions and applications. ChemBioChem 23:e202200212. https://doi.org/10.1002/cbic.202200212
Article CAS PubMed PubMed Central Google Scholar
Beauchamp JM, Leveque RM, Dawid S, DiRita VJ (2017) Methylation-dependent DNA discrimination in natural transformation of Campylobacter jejuni. Proc Natl Acad Sci 114:E8053–E8061. https://doi.org/10.1073/pnas.1703331114
Article CAS PubMed PubMed Central Google Scholar
Beaulaurier J, Schadt EE, Fang G (2019) Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 20:157–172. https://doi.org/10.1038/s41576-018-0081-3
Article CAS PubMed PubMed Central Google Scholar
Becker S, Boch J (2021) TALE and TALEN genome editing technologies. Gene Genome Ed 2:100007. https://doi.org/10.1016/j.ggedit.2021.100007
Bhardwaj A, Nain V (2021) TALENs—an indispensable tool in the era of CRISPR: a mini review. J Genet Eng Biotechnol 19:125. https://doi.org/10.1186/s43141-021-00225-z
Article PubMed PubMed Central Google Scholar
Bird JE, Marles-Wright J, Giachino A (2022) A user’s guide to Golden Gate cloning methods and standards. ACS Synth Biol 11:3551–3563. https://doi.org/10.1021/acssynbio.2c00355
Article CAS PubMed PubMed Central Google Scholar
Blake WJ, Chapman BA, Zindal A, Lee ME, Lippow SM, Baynes BM (2010) Pairwise selection assembly for sequence-independent construction of long-length DNA. Nucleic Acids Res 38:2594–2602. https://doi.org/10.1093/nar/gkq123
Article CAS PubMed PubMed Central Google Scholar
Casadesús J, Sánchez-Romero MA (2022) DNA methylation in prokaryotes. Adv Exp Med Biol 1389:21–43. https://doi.org/10.1007/978-3-031-11454-0_2
Article CAS PubMed Google Scholar
Chang M, Ahn SJ, Han T, Yang D (2024) Gene expression modulation tools for bacterial synthetic biology. Biotechnol Sustain Mater 1:1–10. https://doi.org/10.1186/s44316-024-00005-y
Chen C, Wang M, Zhu J, Tang Y, Zhang H, Zhao Q, Jing M, Chen Y, Xu X, Jiang J, Shen Z (2022) Long-term effect of epigenetic modification in plant–microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process. Microbiome 10:36. https://doi.org/10.1186/s40168-022-01236-9
Article CAS PubMed PubMed Central Google Scholar
Chen W-H, Qin Z-J, Wang J, Zhao G-P (2013) The MASTER (methylation-assisted tailorable ends rational) ligation method for seamless DNA assembly. Nucleic Acids Res 41:e93–e93. https://doi.org/10.1093/nar/gkt122
Article CAS PubMed PubMed Central Google Scholar
De Paoli HC, Tuskan GA, Yang X (2016) An innovative platform for quick and flexible joining of assorted DNA fragments. Sci Rep 6:19278. https://doi.org/10.1038/srep19278
Article CAS PubMed PubMed Central Google Scholar
Doddavarapu B, Lata C, Shah JM (2024) Epigenetic regulation influenced by soil microbiota and nutrients: paving road to epigenome editing in plants. Biochim Biophys Acta - Gen Subj 1868:130580. https://doi.org/10.1016/j.bbagen.2024.130580
Article CAS PubMed Google Scholar
Flores-Fernández CN, Lin D, Robins K, O’Callaghan CA (2024) DNA methylases for site-selective inhibition of type IIS restriction enzyme activity. Appl Microbiol Biotechnol 108:174. https://doi.org/10.1007/s00253-024-13015-7
Article CAS PubMed PubMed Central Google Scholar
Fokina AS, Karyagina AS, Rusinov IS, Moshensky DM, Spirin SA, Alexeevski AV (2023) Evolution of restriction–modification systems consisting of one restriction endonuclease and two DNA methyltransferases. Biochem 88:253–261. https://doi.org/10.1134/S0006297923020086
Furmanek-Blaszk B, Boratynski R, Zolcinska N, Sektas M (2009) M1.Mboll and M2.Mboll type IIS methyltransferases: different specificities, the same target. Microbiology 155:1111–1121. https://doi.org/10.1099/mic.0.025023-0
Article CAS PubMed Google Scholar
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A (2023) Bacterial DNA methyltransferase: a key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1129437
Ghoshal B, Gardiner J (2021) CRISPR-dCas9-based targeted manipulation of DNA methylation in plants. In: Tofazzal I, Kutubuddi A (eds) CRISPR-Cas methods. Springer Science+Business Media, LLC, pp 57–71
Ghoshal B, Picard CL, Vong B, Feng S, Jacobsen SE (2021) CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proc Natl Acad Sci 118:1–8. https://doi.org/10.1073/pnas.2125016118
Guss AM, Olson DG, Caiazza NC, Lynd LR (2012) Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. Biotechnol Biofuels 5:30. https://doi.org/10.1186/1754-6834-5-30
Article CAS PubMed PubMed Central Google Scholar
He L, Huang H, Bradai M, Zhao C, You Y, Ma J, Zhao L, Lozano-Durán R, Zhu J-K (2022) DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat Commun 13:1335. https://doi.org/10.1038/s41467-022-28940-2
Article CAS PubMed PubMed Central Google Scholar
Horton JR, Woodcock CB, Opot SB, Reich NO, Zhang X, Cheng X (2019) The cell cycle-regulated DNA adenine methyltransferase CcrM opens a bubble at its DNA recognition site. Nat Commun 10:4600. https://doi.org/10.1038/s41467-019-12498-7
Article CAS PubMed PubMed Central Google Scholar
Hu S, Giacopazzi S, Modlin R, Karplus K, Bernick DL, Ottemann KM (2023) Altering under-represented DNA sequences elevates bacterial transformation efficiency. Mbio 14:1–6. https://doi.org/10.1128/mbio.02105-23
Kamaliyan Z, Clarke TL (2024) Zinc finger proteins: guardians of genome stability. Front Cell Dev Biol 12:1–8. https://doi.org/10.3389/fcell.2024.1448789
Kennedy MA, Hosford CJ, Azumaya CM, Luyten YA, Chen M, Morgan RD, Stoddard BL (2023) Structures, activity and mechanism of the Type IIS restriction endonuclease PaqCI. Nucleic Acids Res 51:4467–4487. https://doi.org/10.1093/nar/gkad228
Article CAS PubMed PubMed Central Google Scholar
Kumar BKP, Beaubiat S, Yadav CB, Eshed R, Arazi T, Sherman A, Bouché N (2024) Genome wide inherited modifications of the tomato epigenome by trans-activated bacterial CG methyltransferase. Cell Mol Life Sci 81:222. https://doi.org/10.1007/s00018-024-05255-7
Article CAS PubMed PubMed Central Google Scholar
Kumar S, Mohapatra T (2021) Dynamics of DNA methylation and its functions in plant growth and development. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.596236
Leguia M, Brophy JAN, Densmore D, Asante A, Anderson JC (2013) 2ab assembly: a methodology for automatable, high-throughput assembly of standard biological parts. J Biol Eng 7:2. https://doi.org/10.1186/1754-1611-7-2
Article CAS PubMed PubMed Central Google Scholar
Leichter SM, Du J, Zhong X (2022) Structure and mechanism of plant DNA methyltransferases. Adv Exp Med Biol 1389:137–157. https://doi.org/10.1007/978-3-031-11454-0_6
Article CAS PubMed PubMed Central Google Scholar
Lin D, O’Callaghan CA (2018) MetClo: methylase-assisted hierarchical DNA assembly using a single type IIS restriction enzyme. Nucleic Acids Res 46.
Comments (0)