Metabolic engineering and cultivation strategies for efficient production of fucoxanthin and related carotenoids

Anila N, Simon DP, Chandrashekar A, Ravishankar GA, Sarada R (2016) Metabolic engineering of Dunaliella salina for production of ketocarotenoids. Photosynth Res 127(3):321–333. https://doi.org/10.1007/s11120-015-0188-8

Article  PubMed  CAS  Google Scholar 

Anjana K, Arunkumar K (2024) Brown algae biomass for fucoxanthin, fucoidan and alginate; update review on structure, biosynthesis, biological activities and extraction valorisation. Int J Biol Macromol 280(Pt 2):135632. https://doi.org/10.1016/j.ijbiomac.2024.135632

Article  PubMed  CAS  Google Scholar 

Bai Y, Cao T, Dautermann O, Buschbeck P, Cantrell MB, Chen Y, Lein CD, Shi X, Ware MA, Yang F, Zhang H, Zhang L, Peers G, Li X, Lohr M (2022) Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin. Proc Natl Acad Sci U S A 119(38). https://doi.org/10.1073/pnas.2203708119

Bertrand M (2010) Carotenoid biosynthesis in diatoms. Photosynth Res 106(1–2):89–102. https://doi.org/10.1007/s11120-010-9589-x

Article  PubMed  CAS  Google Scholar 

Bleisch R, Freitag L, Ihadjadene Y, Sprenger U, Steingröwer J, Walther T, Krujatz F (2022) Strain development in microalgal biotechnology—random mutagenesis techniques. Life (Basel) 12(7):961. https://doi.org/10.3390/life12070961

Article  PubMed  CAS  Google Scholar 

Cao T, Bai Y, Buschbeck P, Tan Q, Cantrell MB, Chen Y, Jiang Y, Liu RZ, Ries NK, Shi X, Sun Y, Ware MA, Yang F, Zhang H, Han J, Zhang L, Huang J, Lohr M, Peers G, Li X (2023) An unexpected hydratase synthesizes the green light-absorbing pigment fucoxanthin. Plant Cell 35(8):3053–3072. https://doi.org/10.1093/plcell/koad116

Article  PubMed  PubMed Central  Google Scholar 

Cataldo VF, Arenas N, Salgado V, Camilo C, Ibáñez F, Agosin E (2020) Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae. Metab Eng 59:53–63. https://doi.org/10.1016/j.ymben.2020.01.006

Article  PubMed  CAS  Google Scholar 

Cen SY, Li DW, Huang XL, Huang D, Balamurugan S, Liu WJ, Zheng JW, Yang WD, Li HY (2022) Crucial carotenogenic genes elevate hyperaccumulation of both fucoxanthin and β-carotene in Phaeodactylum tricornutum. Algal Res. 64:102691. https://doi.org/10.1016/j.algal.2022.102691

Chen D, Li H, Chen J, Han Y, Zheng X, Xiao Y, Chen X, Chen T, Chen J, Chen Y, Xue T (2023) Combined analysis of chromatin accessibility and gene expression profiles provide insight into fucoxanthin biosynthesis in Isochrysis galbana under green light. Front Microbiol 14:1101681. https://doi.org/10.3389/fmicb.2023.1101681

Article  PubMed  PubMed Central  Google Scholar 

Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93(1):5–11. https://doi.org/10.1002/jsfa.5902

Article  PubMed  CAS  Google Scholar 

Cui H, Ma H, Cui Y, Zhu X, Qin S, Li R (2019) Cloning, identification and functional characterization of two cytochrome P450 carotenoid hydroxylases from the diatom Phaeodactylum tricornutum. J Biosci Bioeng 128(6):755–765. https://doi.org/10.1016/j.jbiosc.2019.06.008

Article  PubMed  CAS  Google Scholar 

Dambek M, Eilers U, Breitenbach J, Steiger S, Büchel C, Sandmann G (2012) Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. J Exp Bot 63(15):5607–5612. https://doi.org/10.1093/jxb/ers211

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dautermann O, Lyska D, Andersen-Ranberg J, Becker M, Fröhlich-Nowoisky J, Gartmann H, Krämer LC, Mayr K, Pieper D, Rij LM, Wipf HM, Niyogi KK, Lohr M (2020) An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Sci Adv 6(10). https://doi.org/10.1126/sciadv.aaw9183

Diao J, Song X, Zhang L, Cui J, Chen L, Zhang W (2020) Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metab Eng 61:275–287. https://doi.org/10.1016/j.ymben.2020.07.003

Article  PubMed  CAS  Google Scholar 

Ding W, Ye Y, Yu L, Liu M, Liu J (2023) Physiochemical and molecular responses of the diatom Phaeodactylum tricornutum to illumination transitions. Biotechnol Biofuels Bioprod 16(1):103. https://doi.org/10.1186/s13068-023-02352-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eilers U, Dietzel L, Breitenbach J, Büchel C, Sandmann G (2016a) Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. J Plant Physiol 192:64–70. https://doi.org/10.1016/j.jplph.2016.01.006

Article  PubMed  CAS  Google Scholar 

Eilers U, Bikoulis A, Breitenbach J, Büchel C, Sandmann G (2016b) Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. J Appl Phycol 28:123–129. https://doi.org/10.1007/s10811-015-0583-8

Article  CAS  Google Scholar 

Englund E, Shabestary K, Hudson EP, Lindberg P (2018) Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Metab Eng 49:164–177. https://doi.org/10.1016/j.ymben.2018.07.004

Article  PubMed  CAS  Google Scholar 

Galarza JI, Gimpel JA, Rojas V, Arredondo-Vega BO, Henríquez V (2018) Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Res 31:291–297. https://doi.org/10.1016/j.algal.2018.02.024

Article  Google Scholar 

Galasso C, Corinaldesi C, Sansone C (2017) Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants (Basel) 6(4):96. https://doi.org/10.3390/antiox6040096

Article  PubMed  CAS  Google Scholar 

Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106(1–2):103–122. https://doi.org/10.1007/s11120-010-9536-x

Article  PubMed  CAS  Google Scholar 

Goss R, Ann Pinto E, Wilhelm C, Richter M (2006) The importance of a highly active and ΔpH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163(10):1008–1021. https://doi.org/10.1016/j.jplph.2005.09.008

Article  PubMed  CAS  Google Scholar 

Græsholt C, Brembu T, Volpe C, Bartosova Z, Serif M, Winge P, Nymark M (2024) Zeaxanthin epoxidase 3 knockout mutants of the model diatom Phaeodactylum tricornutum enable commercial production of the bioactive carotenoid diatoxanthin. Mar Drugs 22(4):185. https://doi.org/10.3390/md22040185

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hao TB, Lu Y, Zhang ZH, Liu SF, Wang X, Yang WD, Balamurugan S, Li HY (2021) Hyperaccumulation of fucoxanthin by enhancing methylerythritol phosphate pathway in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 105(23):8783–8793. https://doi.org/10.1007/s00253-021-11660-w

Article  PubMed  CAS  Google Scholar 

Hasunuma T, Takaki A, Matsuda M, Kato Y, Vavricka CJ, Kondo A (2019) Single-stage astaxanthin production enhances the nonmevalonate pathway and photosynthetic central metabolism in Synechococcus sp. PCC 7002. ACS Synth Biol 8(12):2701–2709. https://doi.org/10.1021/acssynbio.9b00280

Article  PubMed  CAS  Google Scholar 

Hong J, Park SH, Kim S, Kim SW, Hahn JS (2019) Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NADPH production. Appl Microbiol Biotechnol 103(1):211–223. https://doi.org/10.1007/s00253-018-9449-8

Article  PubMed  CAS  Google Scholar 

Kadono T, Kira N, Suzuki K, Iwata O, Ohama T, Okada S, Nishimura T, Akakabe M, Tsuda M, Adachi M (2015) Effect of an introduced phytoene synthase gene expression on carotenoid biosynthesis in the marine diatom Phaeodactylum tricornutum. Mar Drugs 13(8):5334–5357. https://doi.org/10.3390/md13085334

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kanamoto A, Kato Y, Yoshida E, Hasunuma T, Kondo A (2021) Development of a method for fucoxanthin production using the haptophyte marine microalga Pavlova sp. OPMS 30543. Mar Biotechnol (NY) 23(2):331–341. https://doi.org/10.1007/s10126-021-10028-5

Article  PubMed  CAS  Google Scholar 

Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T (2022) Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: a review. Bioresour Technol 344(Pt A):126196. https://doi.org/10.1016/j.biortech.2021.126196

Article  PubMed  CAS 

Comments (0)

No login
gif