Anila N, Simon DP, Chandrashekar A, Ravishankar GA, Sarada R (2016) Metabolic engineering of Dunaliella salina for production of ketocarotenoids. Photosynth Res 127(3):321–333. https://doi.org/10.1007/s11120-015-0188-8
Article PubMed CAS Google Scholar
Anjana K, Arunkumar K (2024) Brown algae biomass for fucoxanthin, fucoidan and alginate; update review on structure, biosynthesis, biological activities and extraction valorisation. Int J Biol Macromol 280(Pt 2):135632. https://doi.org/10.1016/j.ijbiomac.2024.135632
Article PubMed CAS Google Scholar
Bai Y, Cao T, Dautermann O, Buschbeck P, Cantrell MB, Chen Y, Lein CD, Shi X, Ware MA, Yang F, Zhang H, Zhang L, Peers G, Li X, Lohr M (2022) Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin. Proc Natl Acad Sci U S A 119(38). https://doi.org/10.1073/pnas.2203708119
Bertrand M (2010) Carotenoid biosynthesis in diatoms. Photosynth Res 106(1–2):89–102. https://doi.org/10.1007/s11120-010-9589-x
Article PubMed CAS Google Scholar
Bleisch R, Freitag L, Ihadjadene Y, Sprenger U, Steingröwer J, Walther T, Krujatz F (2022) Strain development in microalgal biotechnology—random mutagenesis techniques. Life (Basel) 12(7):961. https://doi.org/10.3390/life12070961
Article PubMed CAS Google Scholar
Cao T, Bai Y, Buschbeck P, Tan Q, Cantrell MB, Chen Y, Jiang Y, Liu RZ, Ries NK, Shi X, Sun Y, Ware MA, Yang F, Zhang H, Han J, Zhang L, Huang J, Lohr M, Peers G, Li X (2023) An unexpected hydratase synthesizes the green light-absorbing pigment fucoxanthin. Plant Cell 35(8):3053–3072. https://doi.org/10.1093/plcell/koad116
Article PubMed PubMed Central Google Scholar
Cataldo VF, Arenas N, Salgado V, Camilo C, Ibáñez F, Agosin E (2020) Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae. Metab Eng 59:53–63. https://doi.org/10.1016/j.ymben.2020.01.006
Article PubMed CAS Google Scholar
Cen SY, Li DW, Huang XL, Huang D, Balamurugan S, Liu WJ, Zheng JW, Yang WD, Li HY (2022) Crucial carotenogenic genes elevate hyperaccumulation of both fucoxanthin and β-carotene in Phaeodactylum tricornutum. Algal Res. 64:102691. https://doi.org/10.1016/j.algal.2022.102691
Chen D, Li H, Chen J, Han Y, Zheng X, Xiao Y, Chen X, Chen T, Chen J, Chen Y, Xue T (2023) Combined analysis of chromatin accessibility and gene expression profiles provide insight into fucoxanthin biosynthesis in Isochrysis galbana under green light. Front Microbiol 14:1101681. https://doi.org/10.3389/fmicb.2023.1101681
Article PubMed PubMed Central Google Scholar
Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93(1):5–11. https://doi.org/10.1002/jsfa.5902
Article PubMed CAS Google Scholar
Cui H, Ma H, Cui Y, Zhu X, Qin S, Li R (2019) Cloning, identification and functional characterization of two cytochrome P450 carotenoid hydroxylases from the diatom Phaeodactylum tricornutum. J Biosci Bioeng 128(6):755–765. https://doi.org/10.1016/j.jbiosc.2019.06.008
Article PubMed CAS Google Scholar
Dambek M, Eilers U, Breitenbach J, Steiger S, Büchel C, Sandmann G (2012) Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. J Exp Bot 63(15):5607–5612. https://doi.org/10.1093/jxb/ers211
Article PubMed PubMed Central CAS Google Scholar
Dautermann O, Lyska D, Andersen-Ranberg J, Becker M, Fröhlich-Nowoisky J, Gartmann H, Krämer LC, Mayr K, Pieper D, Rij LM, Wipf HM, Niyogi KK, Lohr M (2020) An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Sci Adv 6(10). https://doi.org/10.1126/sciadv.aaw9183
Diao J, Song X, Zhang L, Cui J, Chen L, Zhang W (2020) Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metab Eng 61:275–287. https://doi.org/10.1016/j.ymben.2020.07.003
Article PubMed CAS Google Scholar
Ding W, Ye Y, Yu L, Liu M, Liu J (2023) Physiochemical and molecular responses of the diatom Phaeodactylum tricornutum to illumination transitions. Biotechnol Biofuels Bioprod 16(1):103. https://doi.org/10.1186/s13068-023-02352-w
Article PubMed PubMed Central CAS Google Scholar
Eilers U, Dietzel L, Breitenbach J, Büchel C, Sandmann G (2016a) Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. J Plant Physiol 192:64–70. https://doi.org/10.1016/j.jplph.2016.01.006
Article PubMed CAS Google Scholar
Eilers U, Bikoulis A, Breitenbach J, Büchel C, Sandmann G (2016b) Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. J Appl Phycol 28:123–129. https://doi.org/10.1007/s10811-015-0583-8
Englund E, Shabestary K, Hudson EP, Lindberg P (2018) Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Metab Eng 49:164–177. https://doi.org/10.1016/j.ymben.2018.07.004
Article PubMed CAS Google Scholar
Galarza JI, Gimpel JA, Rojas V, Arredondo-Vega BO, Henríquez V (2018) Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Res 31:291–297. https://doi.org/10.1016/j.algal.2018.02.024
Galasso C, Corinaldesi C, Sansone C (2017) Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants (Basel) 6(4):96. https://doi.org/10.3390/antiox6040096
Article PubMed CAS Google Scholar
Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106(1–2):103–122. https://doi.org/10.1007/s11120-010-9536-x
Article PubMed CAS Google Scholar
Goss R, Ann Pinto E, Wilhelm C, Richter M (2006) The importance of a highly active and ΔpH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163(10):1008–1021. https://doi.org/10.1016/j.jplph.2005.09.008
Article PubMed CAS Google Scholar
Græsholt C, Brembu T, Volpe C, Bartosova Z, Serif M, Winge P, Nymark M (2024) Zeaxanthin epoxidase 3 knockout mutants of the model diatom Phaeodactylum tricornutum enable commercial production of the bioactive carotenoid diatoxanthin. Mar Drugs 22(4):185. https://doi.org/10.3390/md22040185
Article PubMed PubMed Central CAS Google Scholar
Hao TB, Lu Y, Zhang ZH, Liu SF, Wang X, Yang WD, Balamurugan S, Li HY (2021) Hyperaccumulation of fucoxanthin by enhancing methylerythritol phosphate pathway in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 105(23):8783–8793. https://doi.org/10.1007/s00253-021-11660-w
Article PubMed CAS Google Scholar
Hasunuma T, Takaki A, Matsuda M, Kato Y, Vavricka CJ, Kondo A (2019) Single-stage astaxanthin production enhances the nonmevalonate pathway and photosynthetic central metabolism in Synechococcus sp. PCC 7002. ACS Synth Biol 8(12):2701–2709. https://doi.org/10.1021/acssynbio.9b00280
Article PubMed CAS Google Scholar
Hong J, Park SH, Kim S, Kim SW, Hahn JS (2019) Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NADPH production. Appl Microbiol Biotechnol 103(1):211–223. https://doi.org/10.1007/s00253-018-9449-8
Article PubMed CAS Google Scholar
Kadono T, Kira N, Suzuki K, Iwata O, Ohama T, Okada S, Nishimura T, Akakabe M, Tsuda M, Adachi M (2015) Effect of an introduced phytoene synthase gene expression on carotenoid biosynthesis in the marine diatom Phaeodactylum tricornutum. Mar Drugs 13(8):5334–5357. https://doi.org/10.3390/md13085334
Article PubMed PubMed Central CAS Google Scholar
Kanamoto A, Kato Y, Yoshida E, Hasunuma T, Kondo A (2021) Development of a method for fucoxanthin production using the haptophyte marine microalga Pavlova sp. OPMS 30543. Mar Biotechnol (NY) 23(2):331–341. https://doi.org/10.1007/s10126-021-10028-5
Article PubMed CAS Google Scholar
Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T (2022) Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: a review. Bioresour Technol 344(Pt A):126196. https://doi.org/10.1016/j.biortech.2021.126196
Comments (0)