Lee SS, Mackey DA. Prevalence and risk factors of myopia in young adults: review of findings from the raine study. Front Public Health. 2022;10:861044.
Article PubMed PubMed Central Google Scholar
Francisco BM, Salvador M, Amparo N. Oxidative stress in myopia. Oxid Med Cell Longev. 2015;2015: 750637.
Article PubMed PubMed Central Google Scholar
Tang YP, Zhang XB, Hu ZX, Lin K, Lin Z, Chen TY, Wu RH, Chi ZL. Vitreous metabolomic signatures of pathological myopia with complications. Eye (Lond). 2023;37(14):2987–93.
Article CAS PubMed Google Scholar
Zhou X, Zhang S, Zhang G, Chen Y, Lei Y, Xiang J, Xu R, Qu J, Zhou X. Increased choroidal blood perfusion can inhibit form deprivation myopia in Guinea Pigs. Invest Ophthalmol Vis Sci. 2020;61(13): 25.
Article CAS PubMed PubMed Central Google Scholar
Wu H, Chen W, Zhao F, Zhou QY, Reinach PS, Deng LL, Ma L, Luo SM, Srinivasalu N, Pan MZ, et al. Scleral hypoxia is a target for myopia control. P Natl Acad Sci USA. 2018;115(30):E7091-100.
Fuhrmann DC, Brune B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017;12:208–15.
Article CAS PubMed PubMed Central Google Scholar
Pialoux V, Mounier R, Brown AD, Steinback CD, Rawling JM, Poulin MJ. Relationship between oxidative stress and HIF-1 alpha mRNA during sustained hypoxia in humans. Free Radic Biol Med. 2009;46(2):321–6.
Article CAS PubMed Google Scholar
Zi Y, Deng Y, Zhao J, Ji M, Qin Y, Deng T, Jin M. Morphologic and biochemical changes in the retina and sclera induced by form deprivation high myopia in guinea pigs. BMC Ophthalmol. 2020;20(1):105.
Article CAS PubMed PubMed Central Google Scholar
Merida S, Villar VM, Navea A, Desco C, Sancho-Tello M, Peris C, Bosch-Morell F. Imbalance between oxidative stress and growth factors in human high myopia. Front Physiol. 2020;11: 463.
Article PubMed PubMed Central Google Scholar
Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13(1):76–86.
Article CAS PubMed PubMed Central Google Scholar
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 2018;98(3):1169–203.
Article CAS PubMed PubMed Central Google Scholar
Sajadimajd S, Khazaei M. Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets. 2018;18(6):538–57.
Article CAS PubMed Google Scholar
Zhang Y, Yang Y, Yu H, Li M, Hang L, Xu X. Apigenin protects mouse retina against oxidative damage by regulating the Nrf2 pathway and autophagy. Oxid Med Cell Longev. 2020;2020:9420704.
PubMed PubMed Central Google Scholar
Lu F, Zhou X, Zhao H, Wang R, Jia D, Jiang L, Xie R, Qu J. Axial myopia induced by a monocularly-deprived facemask in guinea pigs: a non-invasive and effective model. Exp Eye Res. 2006;82(4):628–36.
Article CAS PubMed Google Scholar
Li W, Lan W, Yang S, Liao Y, Xu Q, Lin L, Yang Z. The effect of spectral property and intensity of light on natural refractive development and compensation to negative lenses in guinea pigs. Invest Ophthalmol Vis Sci. 2014;55(10):6324–32.
Article CAS PubMed Google Scholar
Zhao F, Zhang D, Zhou Q, Zhao F, He M, Yang Z, Su Y, Zhai Y, Yan J, Zhang G, et al. Scleral HIF-1alpha is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine. 2020;57:102878.
Article PubMed PubMed Central Google Scholar
Zhong W, Lan C, Gu Z, Tan Q, Xiang X, Zhou H, Liao X. The mechanosensitive piezo1 channel mediates mechanochemical transmission in myopic eyes. Invest Ophthalmol Vis Sci. 2023;64(7): 1.
Article CAS PubMed PubMed Central Google Scholar
Huang H, Kuang X, Zhu X, Cheng H, Zou Y, Du H, Tang H, Zhou L, Zeng J, Liu H, et al. Maintaining blood retinal barrier homeostasis to attenuate retinal ischemia-reperfusion injury by targeting the KEAP1/NRF2/ARE pathway with lycopene. Cell Signal. 2021;88: 110153.
Article CAS PubMed Google Scholar
Taurone S, Ralli M, Artico M, Madia VN, Scarpa S, Nottola SA, Maconi A, Betti M, Familiari P, Nebbioso M, et al. Oxidative stress and visual system: a review. EXCLI J. 2022;21:544–53.
PubMed PubMed Central Google Scholar
Newsome DA, Dobard EP, Liles MR, Oliver PD. Human retinal pigment epithelium contains two distinct species of superoxide dismutase. Invest Ophthalmol Vis Sci. 1990;31(12):2508–13.
Usui S, Oveson BC, Iwase T, Lu L, Lee SY, Jo YJ, Wu Z, Choi EY, Samulski RJ, Campochiaro PA. Overexpression of SOD in retina: need for increase in H2O2-detoxifying enzyme in same cellular compartment. Free Radic Biol Med. 2011;51(7):1347–54.
Article CAS PubMed PubMed Central Google Scholar
Pan F. Defocused image changes signaling of ganglion cells in the mouse retina. Cells. 2019;8(7):640.
Article CAS PubMed PubMed Central Google Scholar
Liu AL, Liu YF, Wang G, Shao YQ, Yu CX, Yang Z, Zhou ZR, Han X, Gong X, Qian KW, et al. The role of ipRGCs in ocular growth and myopia development. Sci Adv. 2022;8(23): eabm9027.
Article CAS PubMed PubMed Central Google Scholar
Sickel W. Electrical and metabolic manifestations of receptor and higher-order neuron activity in vertebrate retina. Adv Exp Med Biol. 1972;24(0):101–18.
Article CAS PubMed Google Scholar
Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy. 2014;10(10):1692–701.
Article CAS PubMed PubMed Central Google Scholar
Chen HY, Ho YJ, Chou HC, Liao EC, Tsai YT, Wei YS, Lin LH, Lin MW, Wang YS, Ko ML, et al. The role of transforming growth factor-beta in retinal ganglion cells with hyperglycemia and oxidative stress. Int J Mol Sci. 2020;21(18):6482.
Article CAS PubMed PubMed Central Google Scholar
Liu JX, Ma DY, Zhi XY, Wang MW, Zhao JY, Qin Y. MiR-125b attenuates retinal pigment epithelium oxidative damage via targeting Nrf2/HIF-1alpha signal pathway. Exp Cell Res. 2022;410(1):112955.
Article CAS PubMed Google Scholar
Tao JX, Zhou WC, Zhu XG. Mitochondria as potential targets and initiators of the blue light hazard to the retina. Oxid Med Cell Longev. 2019;2019:6435364.
Article PubMed PubMed Central Google Scholar
Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057–73.
Article CAS PubMed PubMed Central Google Scholar
Yuki K, Ozawa Y, Yosh
Comments (0)