Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021, 71(3): 209-249. https://doi.org/10.3322/caac.21660
Article CAS PubMed Google Scholar
Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020, 1873(1): 188314. https://doi.org/10.1016/j.bbcan.2019.188314
Article CAS PubMed Google Scholar
Hepatocellular carcinoma. Nat Rev Dis Primers 2021, 7(1): 7. https://doi.org/10.1038/s41572-021-00245-6
Thomas CE, Luu HN, Wang R, Xie G, Adams-Haduch J, Jin A, Koh WP, Jia W, Behari J, Yuan JM. Association between Pre-Diagnostic Serum Bile Acids and Hepatocellular Carcinoma: The Singapore Chinese Health Study. Cancers (Basel) 2021, 13(11). https://doi.org/10.3390/cancers13112648
Article PubMed PubMed Central Google Scholar
McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 Suppl 1(Suppl 1): 4-13. https://doi.org/10.1002/hep.31288
Article CAS PubMed Google Scholar
Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, Melero I, Kudo M, Hou MM, Matilla A, Tovoli F, Knox JJ, Ruth He A, El-Rayes BF, Acosta-Rivera M, Lim HY, Neely J, Shen Y, Wisniewski T, Anderson J, Hsu C. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol 2020, 6(11): e204564. https://doi.org/10.1001/jamaoncol.2020.4564
Article PubMed PubMed Central Google Scholar
Gao X, Chen H, Huang X, Li H, Liu Z, Bo X. ARQ-197 enhances the antitumor effect of sorafenib in hepatocellular carcinoma cells via decelerating its intracellular clearance. Onco Targets Ther 2019, 12: 1629-1640. https://doi.org/10.2147/OTT.S196713
Article CAS PubMed PubMed Central Google Scholar
Elnaggar MH, Abushouk AI, Hassan AHE, Lamloum HM, Benmelouka A, Moatamed SA, Abd-Elmegeed H, Attia S, Samir A, Amr N, Johar D, Zaky S. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol 2021, 69: 91-99. https://doi.org/10.1016/j.semcancer.2019.08.016
Article CAS PubMed Google Scholar
Kumar V, Rahman M, Gahtori P, Al-Abbasi F, Anwar F, Kim HS. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opin Drug Deliv 2021, 18(6): 673-694. https://doi.org/10.1080/17425247.2021.1860939
Article CAS PubMed Google Scholar
Brown KT, Do RK, Gonen M, Covey AM, Getrajdman GI, Sofocleous CT, Jarnagin WR, D’Angelica MI, Allen PJ, Erinjeri JP, Brody LA, O’Neill GP, Johnson KN, Garcia AR, Beattie C, Zhao B, Solomon SB, Schwartz LH, DeMatteo R, Abou-Alfa GK. Randomized Trial of Hepatic Artery Embolization for Hepatocellular Carcinoma Using Doxorubicin-Eluting Microspheres Compared With Embolization With Microspheres Alone. J Clin Oncol 2016, 34(17): 2046-2053. https://doi.org/10.1200/JCO.2015.64.0821
Article CAS PubMed PubMed Central Google Scholar
Wang YX, De Baere T, Idee JM, Ballet S. Transcatheter embolization therapy in liver cancer: an update of clinical evidences. Chin J Cancer Res 2015, 27(2): 96-121. https://doi.org/10.3978/j.issn.1000-9604.2015.03.03
Article PubMed PubMed Central Google Scholar
Wu H, Wang MD, Liang L, Xing H, Zhang CW, Shen F, Huang DS, Yang T. Nanotechnology for Hepatocellular Carcinoma: From Surveillance, Diagnosis to Management. Small 2021, 17(6): e2005236. https://doi.org/10.1002/smll.202005236
Article CAS PubMed Google Scholar
Sheth RA, Wen X, Li J, Melancon MP, Ji X, Wang YA, Hsiao CH, Chow DS, Whitley EM, Li C, Gupta S. Doxorubicin-loaded hollow gold nanospheres for dual photothermal ablation and chemoembolization therapy. Cancer Nanotechnol 2020, 11(1). https://doi.org/10.1186/s12645-020-00062-8
Article PubMed PubMed Central Google Scholar
Wang D, Wu Q, Guo R, Lu C, Niu M, Rao W. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. Nanoscale 2021, 13(19): 8817-8836. https://doi.org/10.1039/d1nr01268a
Article CAS PubMed Google Scholar
Chen Q, Ke H, Dai Z, Liu Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 2015, 73: 214-230. https://doi.org/10.1016/j.biomaterials.2015.09.018
Article CAS PubMed Google Scholar
Huang D, Dai H, Tang K, Chen B, Zhu H, Chen D, Li N, Wang Y, Liu C, Huang Y, Yang J, Zhang C, Lin R, He W. A versatile UCST-type composite microsphere for image-guided chemoembolization and photothermal therapy against liver cancer. Nanoscale 2020, 12(38): 20002-20015. https://doi.org/10.1039/d0nr04592f
Article CAS PubMed Google Scholar
Zhou J, Ling G, Cao J, Ding X, Liao X, Wu M, Zhou X, Xu H, Long Q. Transcatheter Intra-Arterial Infusion Combined with Interventional Photothermal Therapy for the Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2020, 15: 1373-1385. https://doi.org/10.2147/IJN.S233989
Li X, Yuan HJ, Tian XM, Tang J, Liu LF, Liu FY. Biocompatible copper sulfide-based nanocomposites for artery interventional chemo-photothermal therapy of orthotropic hepatocellular carcinoma. Mater Today Bio 2021, 12: 100128. https://doi.org/10.1016/j.mtbio.2021.100128
Article CAS PubMed PubMed Central Google Scholar
Niu S, Zhang X, Williams GR, Wu J, Gao F, Fu Z, Chen X, Lu S, Zhu LM. Hollow Mesoporous Silica Nanoparticles Gated by Chitosan-Copper Sulfide Composites as Theranostic Agents for the Treatment of Breast Cancer. Acta Biomater 2021, 126: 408-420. https://doi.org/10.1016/j.actbio.2021.03.024
Article CAS PubMed Google Scholar
Wen J, Chen Q, Ye L, Zhang H, Zhang A, Feng Z. The preparation of pH and GSH dual responsive thiolated heparin/DOX complex and its application as drug carrier. Carbohydr Polym 2020, 230: 115592. https://doi.org/10.1016/j.carbpol.2019.115592
Article CAS PubMed Google Scholar
Liu F, Li X, Li Y, Qi Y, Yuan H, He J, Li W, Zhou M. Designing pH-triggered drug release iron oxide nanocomposites for MRI-guided photothermal-chemoembolization therapy of liver orthotopic cancer. Biomaterials science 2019, 7(5): 1842-1851. https://doi.org/10.1039/c9bm00056a
Article CAS PubMed Google Scholar
Fan X, Yuan Z, Shou C, Fan G, Wang H, Gao F, Rui Y, Xu K, Yin P. cRGD-Conjugated Fe(3)O(4)@PDA-DOX Multifunctional Nanocomposites for MRI and Antitumor Chemo-Photothermal Therapy. Int J Nanomedicine 2019, 14: 9631-9645. https://doi.org/10.2147/IJN.S222797
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015, 33(9): 941-951. https://doi.org/10.1038/nbt.3330
Article CAS PubMed PubMed Central Google Scholar
Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian Journal of Pharmaceutical Sciences 2020, 15(3): 311-325. https://doi.org/10.1016/j.ajps.2019.06.003
Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020, 52(9): 1207-1226. https://doi.org/10.1007/s00726-020-02890-9
Article CAS PubMed PubMed Central Google Scholar
Wang H, Feng Z, Xu B. Assemblies of Peptides in a Complex Environment and their Applications. Angewandte Chemie (International ed in English) 2019, 58(31): 10423-10432. https://doi.org/10.1002/anie.201814552
Dhawan S, Ghosh S, Ravinder R, Bais SS, Basak S, Krishnan NMA, Agarwal M, Banerjee M, Haridas V. Redox Sensitive Self-Assembling Dipeptide for Sustained Intracellular Drug Delivery. Bioconjug Chem 2019, 30(9): 2458-2468. https://doi.org/10.1021/acs.bioconjchem.9b00532
Comments (0)