Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407–17. https://doi.org/10.1128/jcm.01410-07.
Article CAS PubMed PubMed Central Google Scholar
Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, et al. Molecularanalysis of bacterial species associated with childhood caries. J Clin Microbiol. 2002;40(3):1001–9. https://doi.org/10.1128/jcm.40.3.1001-1009.2002.
Article CAS PubMed PubMed Central Google Scholar
Brown LJ, Selwitz RH. The impact of recent changes in the epidemiology of dental caries on guidelines for the use of dental sealants. J Public Health Dent. 1995;55(5):274–91. https://doi.org/10.1111/j.1752-7325.1995.tb02382.x.
Article CAS PubMed Google Scholar
Carvalho JC. Caries process on occlusal surfaces: evolving evidence and understanding. Caries Res. 2014;48(4):339–46. https://doi.org/10.1159/000356307.
Article CAS PubMed Google Scholar
Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molars in relation to stage of eruption. J Dent Res. 1989;68(5):773–9. https://doi.org/10.1177/00220345890680050401.
Article CAS PubMed Google Scholar
Carvalho JC, Ekstrand KR, Thylstrup A. Results after 1 year of non-operative occlusal cariestreatment of erupting permanent first molars. Community Dent Oral Epidemiol. 1991;19(1):23–8. https://doi.org/10.1111/j.1600-0528.1991.tb00099.x.
Article CAS PubMed Google Scholar
Carvalho JC, Figueredo CS, Mestrinho HD. Clinical report on plaque formation, distribution and maturation within the primary, mixed and permanent dentitions. Eur J Paediatr Dent. 2009;10(4):193–9.
Carvalho JC, et al. Occlusal caries: biological approach for its diagnosis and management: ORCA saturday afternoon symposium, 2015. Caries Res 2016;50(6):527–42. https://doi.org/10.1159/000448662
Carvalho JC, Mestrinho HD, Oliveira LS, Varjão MM, Aimée N, Qvist V. Validation of the Visible Occlusal Plaque Index (VOPI) in estimating caries lesion activity. J Dent. 2017;64:37–44. https://doi.org/10.1016/j.jdent.2017.06.003.
Article CAS PubMed Google Scholar
Celik ZC, Cakiris A, Abaci N, Yaniikoglu F, Ilgin C, Ekmekci SS, et al. The complex microbiome of caries-active and caries-free supragingival plaques in permanent dentition. Niger J Clin Pract. 2021;24(10):1535–40. https://doi.org/10.4103/njcp.njcp_49_21.
Article CAS PubMed Google Scholar
Colombo NH, Ribas LF, Pereira JA, Kreling PF, Kressirer CA, Tanner AC, et al. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch Oral Biol. 2016;69:40–6. https://doi.org/10.1016/j.archoralbio.2016.05.009.
Article CAS PubMed Google Scholar
da Costa RT, de Almeida NA, Azcarate-Peril MA, Divaris K, Wu D, Cho H, et al. The bacterial microbiome and metabolome in caries progression and arrest. J Oral Microbiol. 2021;13(1):1886748. https://doi.org/10.1080/20002297.2021.1886748.
Damnoensawat P, Mitrakul K. Quantitative analysis of Bifidobacterium and Scardovia wiggsiae in dental Plaque from children in Northern Thailand and their association with caries factors. Eur J General Dent. 2024. https://doi.org/10.1055/s-0044-1785473.
Dige I, Raarup M, Nyengaard J, Kilian M, Nyvad B. Actinomyces naeslundii in initial dental biofilm formation. Microbiology (Reading, England). 2009;155:2116–26. https://doi.org/10.1099/mic.0.027706-0.
Article CAS PubMed Google Scholar
Dige I, Grønkjær L, Nyvad B. Molecular studies of the structural ecology of natural occlusal caries. Caries Res. 2014;48(5):451–60. https://doi.org/10.1159/000357920.
Dikmen B. Icdas II criteria (international caries detection and assessment system). J Istanb Univ Fac Dent. 2015;49(3):63–72.
Article CAS PubMed PubMed Central Google Scholar
Dinis M, Traynor W, Agnello M, Sim MS, He X, Shi W, et al. Tooth-specific streptococcus mutans distribution and associated microbiome. Microorganisms. 2022. https://doi.org/10.3390/microorganisms10061129.
Article PubMed PubMed Central Google Scholar
Eriksson L, LifHolgerson P, Esberg A, Johansson I. Microbial complexes and caries in 17-year-olds with and without Streptococcus mutans. J Dent Res. 2018;97(3):275–82. https://doi.org/10.1177/0022034517731758.
Article CAS PubMed Google Scholar
Fejerskov O. Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res. 2004;38(3):182–91. https://doi.org/10.1159/000077753.
Article CAS PubMed Google Scholar
Forssten SD, Björklund M, Ouwehand AC. Streptococcus mutans, caries and simulation models. Nutrients. 2010;2(3):290–8. https://doi.org/10.3390/nu2030290.
Article PubMed PubMed Central Google Scholar
Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol. 2007;52(11):1048–56. https://doi.org/10.1016/j.archoralbio.2007.05.006.
Article CAS PubMed Google Scholar
Haukioja A, Yli-Knuuttila H, Loimaranta V, Kari K, Ouwehand AC, Meurman JH, et al. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol Immunol. 2006;21(5):326–32. https://doi.org/10.1111/j.1399-302x.2006.00299.x.
Article CAS PubMed Google Scholar
Havsed K, Stensson M, Jansson H, Carda-Diéguez M, Pedersen A, Neilands J, et al. Bacterial composition and metabolomics of dental plaque from adolescents. Front Cell Infect Microbiol. 2021;11:716493. https://doi.org/10.3389/fcimb.2021.716493.
Article CAS PubMed PubMed Central Google Scholar
Henne K, Rheinberg A, Melzer-Krick B, Conrads G. Aciduric microbial taxa including Scardovia wiggsiae and Bifidobacterium spp. in caries and caries free subjects. Anaerobe. 2015;35(A):60–5. https://doi.org/10.1016/j.anaerobe.2015.04.011.
Ismail AI, Sohn W, Lim S, Willem JM. Predictors of dental caries progression in primary teeth. J Dent Res. 2009;88(3):270–5. https://doi.org/10.1177/0022034508331011.
Article CAS PubMed PubMed Central Google Scholar
Kameda M, Abiko Y, Washio J, Tanner ACR, Kressirer CA, Mizoguchi I, et al. Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Front Microbiol. 2020;11:479. https://doi.org/10.3389/fmicb.2020.00479.
Article PubMed PubMed Central Google Scholar
Lima KC, Coelho LT, Pinheiro IV, Rôças IN, Siqueira JF Jr. Microbiota of dentinal caries as assessed by reverse-capture checkerboard analysis. Caries Res. 2011;45(1):21–30. https://doi.org/10.1159/000322299.
Article CAS PubMed Google Scholar
Manome A, Abiko Y, Kawashima J, Washio J, Fukumoto S, Takahashi N. Acidogenic potential of oral bifidobacterium and its high fluoride tolerance. Front Microbiol. 2019;10:1099. https://doi.org/10.3389/fmicb.2019.01099.
Article PubMed PubMed Central Google Scholar
Mantzourani M, Fenlon M, Beighton D. Association between Bifidobacteriaceae and the clinical severity of root caries lesions. Oral Microbiol Immunol. 2009a;24(1):32–7. https://doi.org/10.1111/j.1399-302x.20
Comments (0)