Quantitative analysis of Streptococcus mutans, Bifidobacterium, and Scardovia Wiggsiae in occlusal biofilm and their association with Visible Occlusal Plaque Index (VOPI) and International Caries Detection and Assessment System (ICDAS)

Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407–17. https://doi.org/10.1128/jcm.01410-07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, et al. Molecularanalysis of bacterial species associated with childhood caries. J Clin Microbiol. 2002;40(3):1001–9. https://doi.org/10.1128/jcm.40.3.1001-1009.2002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown LJ, Selwitz RH. The impact of recent changes in the epidemiology of dental caries on guidelines for the use of dental sealants. J Public Health Dent. 1995;55(5):274–91. https://doi.org/10.1111/j.1752-7325.1995.tb02382.x.

Article  CAS  PubMed  Google Scholar 

Carvalho JC. Caries process on occlusal surfaces: evolving evidence and understanding. Caries Res. 2014;48(4):339–46. https://doi.org/10.1159/000356307.

Article  CAS  PubMed  Google Scholar 

Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molars in relation to stage of eruption. J Dent Res. 1989;68(5):773–9. https://doi.org/10.1177/00220345890680050401.

Article  CAS  PubMed  Google Scholar 

Carvalho JC, Ekstrand KR, Thylstrup A. Results after 1 year of non-operative occlusal cariestreatment of erupting permanent first molars. Community Dent Oral Epidemiol. 1991;19(1):23–8. https://doi.org/10.1111/j.1600-0528.1991.tb00099.x.

Article  CAS  PubMed  Google Scholar 

Carvalho JC, Figueredo CS, Mestrinho HD. Clinical report on plaque formation, distribution and maturation within the primary, mixed and permanent dentitions. Eur J Paediatr Dent. 2009;10(4):193–9.

CAS  PubMed  Google Scholar 

Carvalho JC, et al. Occlusal caries: biological approach for its diagnosis and management: ORCA saturday afternoon symposium, 2015. Caries Res 2016;50(6):527–42. https://doi.org/10.1159/000448662

Article  PubMed  Google Scholar 

Carvalho JC, Mestrinho HD, Oliveira LS, Varjão MM, Aimée N, Qvist V. Validation of the Visible Occlusal Plaque Index (VOPI) in estimating caries lesion activity. J Dent. 2017;64:37–44. https://doi.org/10.1016/j.jdent.2017.06.003.

Article  CAS  PubMed  Google Scholar 

Celik ZC, Cakiris A, Abaci N, Yaniikoglu F, Ilgin C, Ekmekci SS, et al. The complex microbiome of caries-active and caries-free supragingival plaques in permanent dentition. Niger J Clin Pract. 2021;24(10):1535–40. https://doi.org/10.4103/njcp.njcp_49_21.

Article  CAS  PubMed  Google Scholar 

Colombo NH, Ribas LF, Pereira JA, Kreling PF, Kressirer CA, Tanner AC, et al. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch Oral Biol. 2016;69:40–6. https://doi.org/10.1016/j.archoralbio.2016.05.009.

Article  CAS  PubMed  Google Scholar 

da Costa RT, de Almeida NA, Azcarate-Peril MA, Divaris K, Wu D, Cho H, et al. The bacterial microbiome and metabolome in caries progression and arrest. J Oral Microbiol. 2021;13(1):1886748. https://doi.org/10.1080/20002297.2021.1886748.

Article  CAS  Google Scholar 

Damnoensawat P, Mitrakul K. Quantitative analysis of Bifidobacterium and Scardovia wiggsiae in dental Plaque from children in Northern Thailand and their association with caries factors. Eur J General Dent. 2024. https://doi.org/10.1055/s-0044-1785473.

Article  Google Scholar 

Dige I, Raarup M, Nyengaard J, Kilian M, Nyvad B. Actinomyces naeslundii in initial dental biofilm formation. Microbiology (Reading, England). 2009;155:2116–26. https://doi.org/10.1099/mic.0.027706-0.

Article  CAS  PubMed  Google Scholar 

Dige I, Grønkjær L, Nyvad B. Molecular studies of the structural ecology of natural occlusal caries. Caries Res. 2014;48(5):451–60. https://doi.org/10.1159/000357920.

Article  PubMed  Google Scholar 

Dikmen B. Icdas II criteria (international caries detection and assessment system). J Istanb Univ Fac Dent. 2015;49(3):63–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinis M, Traynor W, Agnello M, Sim MS, He X, Shi W, et al. Tooth-specific streptococcus mutans distribution and associated microbiome. Microorganisms. 2022. https://doi.org/10.3390/microorganisms10061129.

Article  PubMed  PubMed Central  Google Scholar 

Eriksson L, LifHolgerson P, Esberg A, Johansson I. Microbial complexes and caries in 17-year-olds with and without Streptococcus mutans. J Dent Res. 2018;97(3):275–82. https://doi.org/10.1177/0022034517731758.

Article  CAS  PubMed  Google Scholar 

Fejerskov O. Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res. 2004;38(3):182–91. https://doi.org/10.1159/000077753.

Article  CAS  PubMed  Google Scholar 

Forssten SD, Björklund M, Ouwehand AC. Streptococcus mutans, caries and simulation models. Nutrients. 2010;2(3):290–8. https://doi.org/10.3390/nu2030290.

Article  PubMed  PubMed Central  Google Scholar 

Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol. 2007;52(11):1048–56. https://doi.org/10.1016/j.archoralbio.2007.05.006.

Article  CAS  PubMed  Google Scholar 

Haukioja A, Yli-Knuuttila H, Loimaranta V, Kari K, Ouwehand AC, Meurman JH, et al. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol Immunol. 2006;21(5):326–32. https://doi.org/10.1111/j.1399-302x.2006.00299.x.

Article  CAS  PubMed  Google Scholar 

Havsed K, Stensson M, Jansson H, Carda-Diéguez M, Pedersen A, Neilands J, et al. Bacterial composition and metabolomics of dental plaque from adolescents. Front Cell Infect Microbiol. 2021;11:716493. https://doi.org/10.3389/fcimb.2021.716493.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henne K, Rheinberg A, Melzer-Krick B, Conrads G. Aciduric microbial taxa including Scardovia wiggsiae and Bifidobacterium spp. in caries and caries free subjects. Anaerobe. 2015;35(A):60–5. https://doi.org/10.1016/j.anaerobe.2015.04.011.

Article  PubMed  Google Scholar 

Ismail AI, Sohn W, Lim S, Willem JM. Predictors of dental caries progression in primary teeth. J Dent Res. 2009;88(3):270–5. https://doi.org/10.1177/0022034508331011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kameda M, Abiko Y, Washio J, Tanner ACR, Kressirer CA, Mizoguchi I, et al. Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Front Microbiol. 2020;11:479. https://doi.org/10.3389/fmicb.2020.00479.

Article  PubMed  PubMed Central  Google Scholar 

Lima KC, Coelho LT, Pinheiro IV, Rôças IN, Siqueira JF Jr. Microbiota of dentinal caries as assessed by reverse-capture checkerboard analysis. Caries Res. 2011;45(1):21–30. https://doi.org/10.1159/000322299.

Article  CAS  PubMed  Google Scholar 

Manome A, Abiko Y, Kawashima J, Washio J, Fukumoto S, Takahashi N. Acidogenic potential of oral bifidobacterium and its high fluoride tolerance. Front Microbiol. 2019;10:1099. https://doi.org/10.3389/fmicb.2019.01099.

Article  PubMed  PubMed Central  Google Scholar 

Mantzourani M, Fenlon M, Beighton D. Association between Bifidobacteriaceae and the clinical severity of root caries lesions. Oral Microbiol Immunol. 2009a;24(1):32–7. https://doi.org/10.1111/j.1399-302x.20

Comments (0)

No login
gif