Machine Learning Model for Risk Prediction of Prolonged Intensive Care Unit in Patients Receiving Intra-aortic Balloon Pump Therapy during Coronary Artery Bypass Graft Surgery

Kılıç M, et al. Cost Analysis on Intensive Care Unit Costs Based on the Length of Stay. Turk J Anaesthesiol Reanim. 2019;47(2):142–5.

Article  PubMed  PubMed Central  Google Scholar 

Ponzoni CR, et al. Readmission to the Intensive Care Unit: Incidence, Risk Factors, Resource Use, and Outcomes. A Retrospective Cohort Study. Ann Am Thorac Soc. 2017;14(8):1312–9.

Article  PubMed  Google Scholar 

He XY, Gao CQ. Peri-operative application of intra-aortic balloon pumping reduced in-hospital mortality of patients with coronary artery disease and left ventricular dysfunction. Chin Med J. 2019;132(8):935–42.

Article  PubMed  PubMed Central  Google Scholar 

Samanidis G, et al. Analysis of risk factors for in-hospital mortality in 177 patients who underwent isolated coronary bypass grafting and received intra aortic balloon pump. J Card Surg. 2021;36(4):1460–5.

Article  PubMed  Google Scholar 

Rotar EP, et al. Prediction of Prolonged Intensive Care Unit Length of Stay Following Cardiac Surgery. Semin Thorac Cardiovasc Surg. 2022;34(1):172–9.

Article  PubMed  Google Scholar 

Messaoudi N, et al. Prediction of prolonged length of stay in the intensive care unit after cardiac surgery: the need for a multi-institutional risk scoring system. J Card Surg. 2009;24(2):127–33.

Article  PubMed  Google Scholar 

Nassar AP Jr, Caruso P. ICU physicians are unable to accurately predict length of stay at admission: a prospective study. Int J Qual Health Care. 2016;28(1):99–103.

Article  PubMed  Google Scholar 

Erickson BJ. Basic Artificial Intelligence Techniques: Machine Learning and Deep Learning. Radiol Clin North Am. 2021;59(6):933–40.

Article  PubMed  Google Scholar 

Cofre-Martel S, Lopez Droguett E, Modarres M. Big Machinery Data Preprocessing Methodology for Data-Driven Models in Prognostics and Health Management. Sensors. 2021;21(20)

Diab MS, et al. The influence of prolonged intensive care stay on quality of life, recovery, and clinical outcomes following cardiac surgery: A prospective cohort study. J Thorac Cardiovasc Surg. 2018;156(5):1906–1915.e3.

Article  PubMed  Google Scholar 

Freeman BD, et al. Examination of non-clinical factors affecting tracheostomy practice in an academic surgical intensive care unit. Crit Care Med. 2009;37(12):3070–8.

Article  PubMed  Google Scholar 

Hyde GA, et al. Early tracheostomy in trauma patients saves time and money. Injury. 2015;46(1):110–4.

Article  PubMed  Google Scholar 

Chorath K, et al. Association of Early vs Late Tracheostomy Placement With Pneumonia and Ventilator Days in Critically Ill Patients: A Meta-analysis. JAMA Otolaryngol Head Neck Surg. 2021;147(5):450–9.

Article  PubMed  Google Scholar 

Vargas M, et al. Mortality and long-term quality of life after percutaneous tracheotomy in Intensive Care Unit: a prospective observational study. Minerva Anestesiol. 2018;84(9):1024–31.

Article  PubMed  Google Scholar 

Mehta S, et al. Association Between Tracheostomy and Functional, Neuropsychological, and Healthcare Utilization Outcomes in the RECOVER Cohort. Crit Care Explor. 2022;4(10):e0768.

Article  PubMed  PubMed Central  Google Scholar 

Morris LL, Whitmer A, McIntosh E. Tracheostomy care and complications in the intensive care unit. Crit Care Nurse. 2013;33(5):18–30.

Article  PubMed  Google Scholar 

Shang L, et al. Preoperative Liver Function Test Abnormalities Were Associated With Short-Term and Long-Term Prognosis in Cardiac Surgery Patients Without Liver Disease. Front Cardiovasc Med. 2021;8:772430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

González-Pacheco H, et al. Prognostic Implications of Serum Albumin Levels in Patients With Acute Coronary Syndromes. Am J Cardiol. 2017;119(7):951–8.

Article  PubMed  Google Scholar 

Barbagallo M, et al. Early increases in cardiac troponin levels after major vascular surgery is associated with an increased frequency of delayed cardiac complications. J Clin Anesth. 2006;18(4):280–5.

Article  CAS  PubMed  Google Scholar 

Nagele P, et al. High-sensitivity cardiac troponin T in prediction and diagnosis of myocardial infarction and long-term mortality after noncardiac surgery. Am Heart J. 2013;166(2):325–332.e1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gualandro DM, et al. Comparison of high-sensitivity cardiac troponin I and T for the prediction of cardiac complications after non-cardiac surgery. Am Heart J. 2018;203:67–73.

Article  CAS  PubMed  Google Scholar 

Mokhtar AT, et al. Cardiac troponin T is an important predictor of mortality after cardiac surgery. J Crit Care. 2017;38:41–6.

Article  CAS  PubMed  Google Scholar 

Calore C, et al. Prevalence and clinical meaning of isolated increase of QRS voltages in hypertrophic cardiomyopathy versus athlete's heart: relevance to athletic screening. Int J Cardiol. 2013;168(4):4494–7.

Article  PubMed  Google Scholar 

Guo L, et al. Derivation and Validation of a Screening Model for Hypertrophic Cardiomyopathy Based on Electrocardiogram Features. Front Cardiovasc Med. 2022;9:889523.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif